|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "e0a80da8", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import spacy\n", |
| 11 | + "\n", |
| 12 | + "# word vectors occupy lot of space. hence en_core_web_sm model do not have them included. \n", |
| 13 | + "# In order to download\n", |
| 14 | + "# word vectors you need to install large or medium english model. We will install the large one!\n", |
| 15 | + "# make sure you have run \"python -m spacy download en_core_web_lg\" to install large english model\n", |
| 16 | + "nlp = spacy.load(\"en_core_web_lg\")" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 5, |
| 22 | + "id": "f7b0ef24", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [ |
| 25 | + { |
| 26 | + "name": "stdout", |
| 27 | + "output_type": "stream", |
| 28 | + "text": [ |
| 29 | + "dog Vector: True OOV: False\n", |
| 30 | + "cat Vector: True OOV: False\n", |
| 31 | + "banana Vector: True OOV: False\n", |
| 32 | + "kem Vector: False OOV: True\n" |
| 33 | + ] |
| 34 | + } |
| 35 | + ], |
| 36 | + "source": [ |
| 37 | + "doc = nlp(\"dog cat banana kem\")\n", |
| 38 | + "\n", |
| 39 | + "for token in doc:\n", |
| 40 | + " print(token.text, \"Vector:\", token.has_vector, \"OOV:\", token.is_oov)" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 7, |
| 46 | + "id": "c1213a20", |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [ |
| 49 | + { |
| 50 | + "data": { |
| 51 | + "text/plain": [ |
| 52 | + "(300,)" |
| 53 | + ] |
| 54 | + }, |
| 55 | + "execution_count": 7, |
| 56 | + "metadata": {}, |
| 57 | + "output_type": "execute_result" |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "doc[0].vector.shape" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 11, |
| 67 | + "id": "e62cde6f", |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [ |
| 70 | + { |
| 71 | + "data": { |
| 72 | + "text/plain": [ |
| 73 | + "(300,)" |
| 74 | + ] |
| 75 | + }, |
| 76 | + "execution_count": 11, |
| 77 | + "metadata": {}, |
| 78 | + "output_type": "execute_result" |
| 79 | + } |
| 80 | + ], |
| 81 | + "source": [ |
| 82 | + "base_token = nlp(\"bread\")\n", |
| 83 | + "base_token.vector.shape" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": 13, |
| 89 | + "id": "443e1130", |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [ |
| 92 | + { |
| 93 | + "name": "stdout", |
| 94 | + "output_type": "stream", |
| 95 | + "text": [ |
| 96 | + "bread <-> bread: 1.0\n", |
| 97 | + "sandwich <-> bread: 0.6341067010130894\n", |
| 98 | + "burger <-> bread: 0.47520687769584247\n", |
| 99 | + "car <-> bread: 0.06451533308853552\n", |
| 100 | + "tiger <-> bread: 0.04764611675903374\n", |
| 101 | + "human <-> bread: 0.2151154210812192\n", |
| 102 | + "wheat <-> bread: 0.6150360888607199\n" |
| 103 | + ] |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "doc = nlp(\"bread sandwich burger car tiger human wheat\")\n", |
| 108 | + "\n", |
| 109 | + "for token in doc:\n", |
| 110 | + " print(f\"{token.text} <-> {base_token.text}:\", token.similarity(base_token))" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": 14, |
| 116 | + "id": "e9c35619", |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [], |
| 119 | + "source": [ |
| 120 | + "def print_similarity(base_word, words_to_compare):\n", |
| 121 | + " base_token = nlp(base_word)\n", |
| 122 | + " doc = nlp(words_to_compare)\n", |
| 123 | + " for token in doc:\n", |
| 124 | + " print(f\"{token.text} <-> {base_token.text}: \", token.similarity(base_token))" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": 15, |
| 130 | + "id": "4071a3c7", |
| 131 | + "metadata": {}, |
| 132 | + "outputs": [ |
| 133 | + { |
| 134 | + "name": "stdout", |
| 135 | + "output_type": "stream", |
| 136 | + "text": [ |
| 137 | + "apple <-> iphone: 0.4387907401919904\n", |
| 138 | + "samsung <-> iphone: 0.670859081425417\n", |
| 139 | + "iphone <-> iphone: 1.0\n", |
| 140 | + "dog <-> iphone: 0.08211864228011527\n", |
| 141 | + "kitten <-> iphone: 0.10222317834969896\n" |
| 142 | + ] |
| 143 | + } |
| 144 | + ], |
| 145 | + "source": [ |
| 146 | + "print_similarity(\"iphone\", \"apple samsung iphone dog kitten\")" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": 16, |
| 152 | + "id": "daffd61f", |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "king = nlp.vocab[\"king\"].vector\n", |
| 157 | + "man = nlp.vocab[\"man\"].vector\n", |
| 158 | + "woman = nlp.vocab[\"woman\"].vector\n", |
| 159 | + "queen = nlp.vocab[\"queen\"].vector\n", |
| 160 | + "\n", |
| 161 | + "result = king - man + woman" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": 17, |
| 167 | + "id": "ab939b13", |
| 168 | + "metadata": {}, |
| 169 | + "outputs": [ |
| 170 | + { |
| 171 | + "data": { |
| 172 | + "text/plain": [ |
| 173 | + "array([[0.6178015]], dtype=float32)" |
| 174 | + ] |
| 175 | + }, |
| 176 | + "execution_count": 17, |
| 177 | + "metadata": {}, |
| 178 | + "output_type": "execute_result" |
| 179 | + } |
| 180 | + ], |
| 181 | + "source": [ |
| 182 | + "from sklearn.metrics.pairwise import cosine_similarity\n", |
| 183 | + "\n", |
| 184 | + "cosine_similarity([result], [queen])" |
| 185 | + ] |
| 186 | + } |
| 187 | + ], |
| 188 | + "metadata": { |
| 189 | + "kernelspec": { |
| 190 | + "display_name": "Python 3", |
| 191 | + "language": "python", |
| 192 | + "name": "python3" |
| 193 | + }, |
| 194 | + "language_info": { |
| 195 | + "codemirror_mode": { |
| 196 | + "name": "ipython", |
| 197 | + "version": 3 |
| 198 | + }, |
| 199 | + "file_extension": ".py", |
| 200 | + "mimetype": "text/x-python", |
| 201 | + "name": "python", |
| 202 | + "nbconvert_exporter": "python", |
| 203 | + "pygments_lexer": "ipython3", |
| 204 | + "version": "3.8.10" |
| 205 | + } |
| 206 | + }, |
| 207 | + "nbformat": 4, |
| 208 | + "nbformat_minor": 5 |
| 209 | +} |
0 commit comments