|
| 1 | +package org.wsc.array; |
| 2 | + |
| 3 | +public class ArrayUtil { |
| 4 | + /** |
| 5 | + * 给定一个整形数组a , 对该数组的值进行置换 例如: a = [7, 9 , 30, 3] , 置换后为 [3, 30, 9,7] 如果 a = |
| 6 | + * [7, 9, 30, 3, 4] , 置换后为 [4,3, 30 , 9,7] |
| 7 | + * |
| 8 | + * @param origin |
| 9 | + * @return |
| 10 | + */ |
| 11 | + public static void reverseArray(int[] origin) { |
| 12 | + // 折半 |
| 13 | + for (int i = 0; i < (origin.length >> 1); i++) { |
| 14 | + int num = origin[i]; |
| 15 | + origin[i] = origin[origin.length - 1 - i]; |
| 16 | + origin[origin.length - 1 - i] = num; |
| 17 | + } |
| 18 | + } |
| 19 | + |
| 20 | + /** |
| 21 | + * 现在有如下的一个数组: int oldArr[]={1,3,4,5,0,0,6,6,0,5,4,7,6,7,0,5} |
| 22 | + * 要求将以上数组中值为0的项去掉,将不为0的值存入一个新的数组,生成的新数组为: {1,3,4,5,6,6,5,4,7,6,7,5} |
| 23 | + * |
| 24 | + * @param oldArray |
| 25 | + * @return |
| 26 | + */ |
| 27 | + public static int[] removeZero(int[] oldArray) { |
| 28 | + int count = 0;// 计数器 |
| 29 | + /* |
| 30 | + * 利用冒泡,将0元素向后排 {1,3,4,5,0,0,6,6,0,5,4,7,6,7,0,5} |
| 31 | + * {1,3,4,5,0,6,6,0,5,4,7,6,7,0,5,0} {1,3,4,5,6,6,0,5,4,7,6,7,0,5,0,0} |
| 32 | + * .... |
| 33 | + */ |
| 34 | + for (int i = 0; i < oldArray.length - count; i++) { |
| 35 | + // 索引为i的元素为0,则依次将索引i的元素与i+1的元素对换 |
| 36 | + if (oldArray[i] == 0) { |
| 37 | + for (int j = i; j < oldArray.length - 1 - count; j++) { |
| 38 | + int num = oldArray[j]; |
| 39 | + oldArray[j] = oldArray[j + 1]; |
| 40 | + oldArray[j + 1] = num; |
| 41 | + } |
| 42 | + count++;// 计数器+1 |
| 43 | + i--;// 防止原索引i+1位置的元素为0, |
| 44 | + } |
| 45 | + } |
| 46 | + // 创建新数组 |
| 47 | + int[] newArray = new int[oldArray.length - count]; |
| 48 | + System.arraycopy(oldArray, 0, newArray, 0, newArray.length); |
| 49 | + return newArray; |
| 50 | + } |
| 51 | + |
| 52 | + /** |
| 53 | + * 现在有如下的一个数组: int oldArr[]={1,3,4,5,0,0,6,6,0,5,4,7,6,7,0,5} |
| 54 | + * 要求将以上数组中值为0的项去掉,将不为0的值存入一个新的数组,生成的新数组为: {1,3,4,5,6,6,5,4,7,6,7,5} |
| 55 | + * |
| 56 | + * @param oldArray |
| 57 | + * @return |
| 58 | + */ |
| 59 | + public static int[] removeZero2(int[] oldArray) { |
| 60 | + int count = 0;// 计数器 |
| 61 | + for (int i = 0; i < oldArray.length; i++) { |
| 62 | + if (oldArray[i] == 0) |
| 63 | + count++;// 计数器+1 |
| 64 | + } |
| 65 | + // 创建新数组 |
| 66 | + int[] newArray = new int[oldArray.length - count]; |
| 67 | + for (int i = 0, j = 0; i < oldArray.length; i++) { |
| 68 | + if (oldArray[i] != 0) { |
| 69 | + newArray[j] = oldArray[i]; |
| 70 | + j++; |
| 71 | + } |
| 72 | + } |
| 73 | + return newArray; |
| 74 | + } |
| 75 | + |
| 76 | + /** |
| 77 | + * 给定两个已经排序好的整形数组, a1和a2 , 创建一个新的数组a3, 使得a3 包含a1和a2 的所有元素, 并且仍然是有序的 例如 a1 = |
| 78 | + * [3, 5, 7,8] a2 = [4, 5, 6,7] 则 a3 为[3,4,5,6,7,8] , 注意: 已经消除了重复 |
| 79 | + * |
| 80 | + * @param array1 |
| 81 | + * @param array2 |
| 82 | + * @return |
| 83 | + */ |
| 84 | + |
| 85 | + public static int[] merge(int[] array1, int[] array2) { |
| 86 | + int[] newArray = new int[array1.length + array2.length]; |
| 87 | + int i = 0, j = 0, k = 0; |
| 88 | + while (i < array1.length && j < array2.length) { |
| 89 | + // <= 都取 array1 |
| 90 | + if (array1[i] <= array2[j]) { |
| 91 | + // 等于时,将array2下标++ |
| 92 | + if (array1[i] == array2[j]) |
| 93 | + j++; |
| 94 | + newArray[k++] = array1[i++]; |
| 95 | + } else |
| 96 | + newArray[k++] = array2[j++]; |
| 97 | + |
| 98 | + } |
| 99 | + // 将没有循环完毕的元素插入 |
| 100 | + while (i < array1.length) |
| 101 | + newArray[k++] = array1[i++]; |
| 102 | + while (j < array2.length) |
| 103 | + newArray[k++] = array2[j++]; |
| 104 | + int[] result = newArray; |
| 105 | + // 长度缩短则新建数组 |
| 106 | + if (k < newArray.length) { |
| 107 | + result = new int[k]; |
| 108 | + for (int l = 0; l < result.length; l++) |
| 109 | + result[l] = newArray[l]; |
| 110 | + } |
| 111 | + return result; |
| 112 | + } |
| 113 | + |
| 114 | + /** |
| 115 | + * 把一个已经存满数据的数组 oldArray的容量进行扩展, 扩展后的新数据大小为oldArray.length + size |
| 116 | + * 注意,老数组的元素在新数组中需要保持 例如 oldArray = [2,3,6] , size = 3,则返回的新数组为 |
| 117 | + * [2,3,6,0,0,0] |
| 118 | + * |
| 119 | + * @param oldArray |
| 120 | + * @param size |
| 121 | + * @return |
| 122 | + */ |
| 123 | + public static int[] grow(int[] oldArray, int size) { |
| 124 | + int[] newArray = new int[oldArray.length + size]; |
| 125 | + for (int i = 0; i < oldArray.length; i++) { |
| 126 | + newArray[i] = oldArray[i]; |
| 127 | + } |
| 128 | + return newArray; |
| 129 | + } |
| 130 | + |
| 131 | + /** |
| 132 | + * 斐波那契数列为:1,1,2,3,5,8,13,21...... ,给定一个最大值, 返回小于该值的数列 例如, max = 15 , |
| 133 | + * 则返回的数组应该为 [1,1,2,3,5,8,13] max = 1, 则返回空数组 [] |
| 134 | + * |
| 135 | + * @param max |
| 136 | + * @return |
| 137 | + */ |
| 138 | + public static int[] fibonacci(int max) { |
| 139 | + if (max <= 1) |
| 140 | + return new int[] {}; |
| 141 | + int[] nums = new int[max]; |
| 142 | + nums[0] = nums[1] = 1; |
| 143 | + int flag; |
| 144 | + for (flag = 0; (flag < max - 2 && nums[flag] + nums[flag + 1] < max); flag++) { |
| 145 | + nums[flag + 2] = nums[flag] + nums[flag + 1]; |
| 146 | + } |
| 147 | + // 创建新数组 |
| 148 | + int[] newArray = nums; |
| 149 | + if (newArray.length != flag + 2) { |
| 150 | + newArray = new int[flag + 2]; |
| 151 | + for (int i = 0; i < newArray.length; i++) { |
| 152 | + newArray[i] = nums[i]; |
| 153 | + } |
| 154 | + } |
| 155 | + return newArray; |
| 156 | + } |
| 157 | + |
| 158 | + /** |
| 159 | + * 返回小于给定最大值max的所有素数数组 例如max = 23, 返回的数组为[2,3,5,7,11,13,17,19] |
| 160 | + * |
| 161 | + * @param max |
| 162 | + * @return |
| 163 | + */ |
| 164 | + public static int[] getPrimes(int max) { |
| 165 | + int[] array = new int[max>>1]; |
| 166 | + int flag = 0; |
| 167 | + for (int i = 2; i < max; i++) { |
| 168 | + int j; |
| 169 | + for (j = 2; j <= (i >> 1); j++) { |
| 170 | + if (i % j == 0) |
| 171 | + break; |
| 172 | + |
| 173 | + } |
| 174 | + //如果大于,则证明j++有运行,已经完整对比 |
| 175 | + if(j > i>>1) |
| 176 | + array[flag++] = i; |
| 177 | + |
| 178 | + } |
| 179 | + int[] newArray = array; |
| 180 | + if(flag < array.length){ |
| 181 | + newArray = new int[flag]; |
| 182 | + for (int i = 0; i < newArray.length; i++) { |
| 183 | + newArray[i] = array[i]; |
| 184 | + } |
| 185 | + } |
| 186 | + return newArray; |
| 187 | + } |
| 188 | + |
| 189 | + /** |
| 190 | + * 所谓“完数”, 是指这个数恰好等于它的因子之和,例如6=1+2+3 给定一个最大值max, 返回一个数组, 数组中是小于max 的所有完数 |
| 191 | + * |
| 192 | + * @param max |
| 193 | + * @return |
| 194 | + */ |
| 195 | + public static int[] getPerfectNumbers(int max) { |
| 196 | + int[] array = new int[max]; |
| 197 | + int flag = 0; |
| 198 | + for (int i = 1; i < max; i++) { |
| 199 | + int sum = 0; |
| 200 | + for (int j = 1; j < i; j++) { |
| 201 | + if (i % j == 0) |
| 202 | + sum+=j; |
| 203 | + } |
| 204 | + //如果大于,则证明j++有运行,已经完整对比 |
| 205 | + if(sum == i) |
| 206 | + array[flag++] = i; |
| 207 | + |
| 208 | + } |
| 209 | + int[] newArray = array; |
| 210 | + if(flag < array.length){ |
| 211 | + newArray = new int[flag]; |
| 212 | + for (int i = 0; i < newArray.length; i++) { |
| 213 | + newArray[i] = array[i]; |
| 214 | + } |
| 215 | + } |
| 216 | + return newArray; |
| 217 | + } |
| 218 | + |
| 219 | + /** |
| 220 | + * 用seperator 把数组 array给连接起来 例如array= [3,8,9], seperator = "-" 则返回值为"3-8-9" |
| 221 | + * |
| 222 | + * @param array |
| 223 | + * @param s |
| 224 | + * @return |
| 225 | + */ |
| 226 | + public static String join(int[] array, String seperator) { |
| 227 | + String str = ""; |
| 228 | + for (int i = 0; i < array.length; i++) |
| 229 | + str += i != array.length - 1 ? array[i] + seperator : array[i]; |
| 230 | + return str; |
| 231 | + } |
| 232 | +} |
0 commit comments