|
1 | 1 | package com.fishercoder.solutions;
|
2 | 2 |
|
3 |
| -/**766. Toeplitz Matrix |
4 |
| - * |
5 |
| - * A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. |
6 |
| -
|
7 |
| - Now given an M x N matrix, return True if and only if the matrix is Toeplitz. |
8 |
| -
|
9 |
| - Example 1: |
10 |
| -
|
11 |
| - Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] |
12 |
| - Output: True |
13 |
| - Explanation: |
14 |
| - 1234 |
15 |
| - 5123 |
16 |
| - 9512 |
17 |
| -
|
18 |
| - In the above grid, the diagonals are "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]", |
19 |
| - and in each diagonal all elements are the same, so the answer is True. |
20 |
| -
|
21 |
| - Example 2: |
22 |
| -
|
23 |
| - Input: matrix = [[1,2],[2,2]] |
24 |
| - Output: False |
25 |
| - Explanation: |
26 |
| - The diagonal "[1, 2]" has different elements. |
27 |
| -
|
28 |
| - Note: |
29 |
| -
|
30 |
| - matrix will be a 2D array of integers. |
31 |
| - matrix will have a number of rows and columns in range [1, 20]. |
32 |
| - matrix[i][j] will be integers in range [0, 99]. |
33 |
| -
|
34 |
| - */ |
35 | 3 | public class _766 {
|
36 |
| - public static class Solution1 { |
37 |
| - public boolean isToeplitzMatrix(int[][] matrix) { |
38 |
| - int m = matrix.length; |
39 |
| - int n = matrix[0].length; |
40 |
| - int i = 0; |
41 |
| - int j = 0; |
42 |
| - int sameVal = matrix[i][j]; |
43 |
| - while (++i < m && ++j < n) { |
44 |
| - if (matrix[i][j] != sameVal) { |
45 |
| - return false; |
46 |
| - } |
47 |
| - } |
48 |
| - |
49 |
| - for (i = 1, j = 0; i < m; i++) { |
50 |
| - int tmpI = i; |
51 |
| - int tmpJ = j; |
52 |
| - sameVal = matrix[i][j]; |
53 |
| - while (++tmpI < m && ++tmpJ < n) { |
54 |
| - if (matrix[tmpI][tmpJ] != sameVal) { |
55 |
| - return false; |
56 |
| - } |
57 |
| - } |
58 |
| - } |
59 |
| - for (i = 0, j = 1; j < n; j++) { |
60 |
| - int tmpJ = j; |
61 |
| - int tmpI = i; |
62 |
| - sameVal = matrix[tmpI][tmpJ]; |
63 |
| - while (++tmpI < m && ++tmpJ < n) { |
64 |
| - if (matrix[tmpI][tmpJ] != sameVal) { |
65 |
| - return false; |
66 |
| - } |
| 4 | + public static class Solution1 { |
| 5 | + public boolean isToeplitzMatrix(int[][] matrix) { |
| 6 | + int m = matrix.length; |
| 7 | + int n = matrix[0].length; |
| 8 | + int i = 0; |
| 9 | + int j = 0; |
| 10 | + int sameVal = matrix[i][j]; |
| 11 | + while (++i < m && ++j < n) { |
| 12 | + if (matrix[i][j] != sameVal) { |
| 13 | + return false; |
| 14 | + } |
| 15 | + } |
| 16 | + |
| 17 | + for (i = 1, j = 0; i < m; i++) { |
| 18 | + int tmpI = i; |
| 19 | + int tmpJ = j; |
| 20 | + sameVal = matrix[i][j]; |
| 21 | + while (++tmpI < m && ++tmpJ < n) { |
| 22 | + if (matrix[tmpI][tmpJ] != sameVal) { |
| 23 | + return false; |
| 24 | + } |
| 25 | + } |
| 26 | + } |
| 27 | + for (i = 0, j = 1; j < n; j++) { |
| 28 | + int tmpJ = j; |
| 29 | + int tmpI = i; |
| 30 | + sameVal = matrix[tmpI][tmpJ]; |
| 31 | + while (++tmpI < m && ++tmpJ < n) { |
| 32 | + if (matrix[tmpI][tmpJ] != sameVal) { |
| 33 | + return false; |
| 34 | + } |
| 35 | + } |
| 36 | + } |
| 37 | + return true; |
67 | 38 | }
|
68 |
| - } |
69 |
| - return true; |
70 | 39 | }
|
71 |
| - } |
72 | 40 | }
|
0 commit comments