|
3 | 3 | import java.util.HashSet;
|
4 | 4 | import java.util.Set;
|
5 | 5 |
|
6 |
| -/** |
7 |
| - * 840. Magic Squares In Grid |
8 |
| - * |
9 |
| - * A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, |
10 |
| - * column, and both diagonals all have the same sum. |
11 |
| - * |
12 |
| - * Given an grid of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous). |
13 |
| - * |
14 |
| - * Example 1: |
15 |
| - * |
16 |
| - * Input: [[4,3,8,4], |
17 |
| - * [9,5,1,9], |
18 |
| - * [2,7,6,2]] |
19 |
| - * |
20 |
| - * Output: 1 |
21 |
| - * |
22 |
| - * Explanation: |
23 |
| - * The following subgrid is a 3 x 3 magic square: |
24 |
| - * 438 |
25 |
| - * 951 |
26 |
| - * 276 |
27 |
| - * |
28 |
| - * while this one is not: |
29 |
| - * 384 |
30 |
| - * 519 |
31 |
| - * 762 |
32 |
| - * |
33 |
| - * In total, there is only one magic square inside the given grid. |
34 |
| - * Note: |
35 |
| - * |
36 |
| - * 1 <= grid.length <= 10 |
37 |
| - * 1 <= grid[0].length <= 10 |
38 |
| - * 0 <= grid[i][j] <= 15 |
39 |
| - */ |
40 | 6 | public class _840 {
|
41 |
| - public static class Solution1 { |
42 |
| - public int numMagicSquaresInside(int[][] grid) { |
43 |
| - int m = grid.length; |
44 |
| - int n = grid[0].length; |
45 |
| - int count = 0; |
46 |
| - for (int i = 0; i < m - 2; i++) { |
47 |
| - for (int j = 0; j < n - 2; j++) { |
48 |
| - Set<Integer> set = new HashSet<>(); |
49 |
| - int sum = grid[i][j] + grid[i][j + 1] + grid[i][j + 2]; |
50 |
| - if (sum == grid[i + 1][j] + grid[i + 1][j + 1] + grid[i + 1][j + 2] |
51 |
| - && sum == grid[i + 2][j] + grid[i + 2][j + 1] + grid[i + 2][j + 2] |
| 7 | + public static class Solution1 { |
| 8 | + public int numMagicSquaresInside(int[][] grid) { |
| 9 | + int m = grid.length; |
| 10 | + int n = grid[0].length; |
| 11 | + int count = 0; |
| 12 | + for (int i = 0; i < m - 2; i++) { |
| 13 | + for (int j = 0; j < n - 2; j++) { |
| 14 | + Set<Integer> set = new HashSet<>(); |
| 15 | + int sum = grid[i][j] + grid[i][j + 1] + grid[i][j + 2]; |
| 16 | + if (sum == grid[i + 1][j] + grid[i + 1][j + 1] + grid[i + 1][j + 2] |
| 17 | + && sum == grid[i + 2][j] + grid[i + 2][j + 1] + grid[i + 2][j + 2] |
52 | 18 |
|
53 |
| - && sum == grid[i][j] + grid[i + 1][j] + grid[i + 2][j] |
54 |
| - && sum == grid[i][j + 1] + grid[i + 1][j + 1] + grid[i + 2][j + 1] |
55 |
| - && sum == grid[i][j + 2] + grid[i + 1][j + 2] + grid[i + 2][j + 2] |
| 19 | + && sum == grid[i][j] + grid[i + 1][j] + grid[i + 2][j] |
| 20 | + && sum == grid[i][j + 1] + grid[i + 1][j + 1] + grid[i + 2][j + 1] |
| 21 | + && sum == grid[i][j + 2] + grid[i + 1][j + 2] + grid[i + 2][j + 2] |
56 | 22 |
|
57 |
| - && sum == grid[i][j] + grid[i + 1][j + 1] + grid[i + 2][j + 2] |
58 |
| - && sum == grid[i][j + 2] + grid[i + 1][j + 1] + grid[i + 2][j] |
| 23 | + && sum == grid[i][j] + grid[i + 1][j + 1] + grid[i + 2][j + 2] |
| 24 | + && sum == grid[i][j + 2] + grid[i + 1][j + 1] + grid[i + 2][j] |
59 | 25 |
|
60 |
| - && set.add(grid[i][j]) && isLegit(grid[i][j]) |
61 |
| - && set.add(grid[i][j + 1]) && isLegit(grid[i][j + 1]) |
62 |
| - && set.add(grid[i][j + 2]) && isLegit(grid[i][j + 2]) |
63 |
| - && set.add(grid[i + 1][j]) && isLegit(grid[i + 1][j]) |
64 |
| - && set.add(grid[i + 1][j + 1]) && isLegit(grid[i + 1][j + 1]) |
65 |
| - && set.add(grid[i + 1][j + 2]) && isLegit(grid[i + 1][j + 2]) |
66 |
| - && set.add(grid[i + 2][j]) && isLegit(grid[i + 2][j]) |
67 |
| - && set.add(grid[i + 2][j + 1]) && isLegit(grid[i + 2][j + 1]) |
68 |
| - && set.add(grid[i + 2][j + 2]) && isLegit(grid[i + 2][j + 2]) |
69 |
| - ) { |
70 |
| - count++; |
71 |
| - } |
| 26 | + && set.add(grid[i][j]) && isLegit(grid[i][j]) |
| 27 | + && set.add(grid[i][j + 1]) && isLegit(grid[i][j + 1]) |
| 28 | + && set.add(grid[i][j + 2]) && isLegit(grid[i][j + 2]) |
| 29 | + && set.add(grid[i + 1][j]) && isLegit(grid[i + 1][j]) |
| 30 | + && set.add(grid[i + 1][j + 1]) && isLegit(grid[i + 1][j + 1]) |
| 31 | + && set.add(grid[i + 1][j + 2]) && isLegit(grid[i + 1][j + 2]) |
| 32 | + && set.add(grid[i + 2][j]) && isLegit(grid[i + 2][j]) |
| 33 | + && set.add(grid[i + 2][j + 1]) && isLegit(grid[i + 2][j + 1]) |
| 34 | + && set.add(grid[i + 2][j + 2]) && isLegit(grid[i + 2][j + 2]) |
| 35 | + ) { |
| 36 | + count++; |
| 37 | + } |
| 38 | + } |
| 39 | + } |
| 40 | + return count; |
72 | 41 | }
|
73 |
| - } |
74 |
| - return count; |
75 |
| - } |
76 | 42 |
|
77 |
| - private boolean isLegit(int num) { |
78 |
| - return num <= 9 && num >= 1; |
| 43 | + private boolean isLegit(int num) { |
| 44 | + return num <= 9 && num >= 1; |
| 45 | + } |
79 | 46 | }
|
80 |
| - } |
81 | 47 | }
|
0 commit comments