|
1 | 1 | package com.fishercoder.solutions;
|
2 | 2 |
|
3 |
| -/** |
4 |
| - * 154. Find Minimum in Rotated Sorted Array II |
5 |
| -
|
6 |
| - Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. |
7 |
| -
|
8 |
| - (i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]). |
9 |
| -
|
10 |
| - Find the minimum element. |
11 |
| -
|
12 |
| - The array may contain duplicates. |
13 |
| -
|
14 |
| - Example 1: |
15 |
| - Input: [1,3,5] |
16 |
| - Output: 1 |
17 |
| -
|
18 |
| - Example 2: |
19 |
| - Input: [2,2,2,0,1] |
20 |
| - Output: 0 |
21 |
| -
|
22 |
| - Note: |
23 |
| - This is a follow up problem to Find Minimum in Rotated Sorted Array. |
24 |
| - Would allow duplicates affect the run-time complexity? How and why? |
25 |
| -
|
26 |
| - */ |
27 | 3 | public class _154 {
|
28 |
| - public static class Solution1 { |
29 |
| - public int findMin(int[] nums) { |
30 |
| - int left = 0; |
31 |
| - int right = nums.length - 1; |
32 |
| - if (nums[left] < nums[right]) { |
33 |
| - return nums[left]; |
34 |
| - } |
35 |
| - int min = nums[0]; |
36 |
| - while (left + 1 < right) { |
37 |
| - int mid = left + (right - left) / 2; |
38 |
| - min = Math.min(min, nums[mid]); |
39 |
| - if (nums[mid] > nums[left]) { |
40 |
| - min = Math.min(nums[left], min); |
41 |
| - left = mid + 1; |
42 |
| - } else if (nums[mid] < nums[left]) { |
43 |
| - right = mid - 1; |
44 |
| - } else { |
45 |
| - left++; |
| 4 | + public static class Solution1 { |
| 5 | + public int findMin(int[] nums) { |
| 6 | + int left = 0; |
| 7 | + int right = nums.length - 1; |
| 8 | + if (nums[left] < nums[right]) { |
| 9 | + return nums[left]; |
| 10 | + } |
| 11 | + int min = nums[0]; |
| 12 | + while (left + 1 < right) { |
| 13 | + int mid = left + (right - left) / 2; |
| 14 | + min = Math.min(min, nums[mid]); |
| 15 | + if (nums[mid] > nums[left]) { |
| 16 | + min = Math.min(nums[left], min); |
| 17 | + left = mid + 1; |
| 18 | + } else if (nums[mid] < nums[left]) { |
| 19 | + right = mid - 1; |
| 20 | + } else { |
| 21 | + left++; |
| 22 | + } |
| 23 | + } |
| 24 | + min = Math.min(min, Math.min(nums[left], nums[right])); |
| 25 | + return min; |
46 | 26 | }
|
47 |
| - } |
48 |
| - min = Math.min(min, Math.min(nums[left], nums[right])); |
49 |
| - return min; |
50 | 27 | }
|
51 |
| - } |
52 | 28 | }
|
0 commit comments