|
4 | 4 | import java.util.Collections;
|
5 | 5 | import java.util.List;
|
6 | 6 |
|
7 |
| -/** |
8 |
| - * 989. Add to Array-Form of Integer |
9 |
| - * |
10 |
| - * For a non-negative integer X, the array-form of X is an array of its digits in left to right order. For example, if X = 1231, then the array form is [1,2,3,1]. |
11 |
| - * |
12 |
| - * Given the array-form A of a non-negative integer X, return the array-form of the integer X+K. |
13 |
| - * |
14 |
| - * Example 1: |
15 |
| - * |
16 |
| - * Input: A = [1,2,0,0], K = 34 |
17 |
| - * Output: [1,2,3,4] |
18 |
| - * Explanation: 1200 + 34 = 1234 |
19 |
| - * Example 2: |
20 |
| - * |
21 |
| - * Input: A = [2,7,4], K = 181 |
22 |
| - * Output: [4,5,5] |
23 |
| - * Explanation: 274 + 181 = 455 |
24 |
| - * Example 3: |
25 |
| - * |
26 |
| - * Input: A = [2,1,5], K = 806 |
27 |
| - * Output: [1,0,2,1] |
28 |
| - * Explanation: 215 + 806 = 1021 |
29 |
| - * Example 4: |
30 |
| - * |
31 |
| - * Input: A = [9,9,9,9,9,9,9,9,9,9], K = 1 |
32 |
| - * Output: [1,0,0,0,0,0,0,0,0,0,0] |
33 |
| - * Explanation: 9999999999 + 1 = 10000000000 |
34 |
| - * |
35 |
| - * Note: |
36 |
| - * |
37 |
| - * 1 <= A.length <= 10000 |
38 |
| - * 0 <= A[i] <= 9 |
39 |
| - * 0 <= K <= 10000 |
40 |
| - * If A.length > 1, then A[0] != 0 |
41 |
| - */ |
42 | 7 | public class _989 {
|
43 |
| - public static class Solution1 { |
44 |
| - public List<Integer> addToArrayForm(int[] A, int K) { |
45 |
| - List<Integer> kDigitsReversed = new ArrayList<>(); |
46 |
| - int divisor = 10; |
47 |
| - while (K != 0) { |
48 |
| - kDigitsReversed.add(K % divisor); |
49 |
| - K /= 10; |
50 |
| - } |
51 |
| - List<Integer> result = new ArrayList<>(); |
52 |
| - int prevFlow = 0; |
53 |
| - for (int i = A.length - 1, j = 0; i >= 0 || j < kDigitsReversed.size(); i --, j++) { |
54 |
| - int sum; |
55 |
| - if (i >= 0 && j < kDigitsReversed.size()) { |
56 |
| - sum = A[i] + kDigitsReversed.get(j); |
57 |
| - } else if (i >= 0) { |
58 |
| - sum = A[i]; |
59 |
| - } else { |
60 |
| - sum = kDigitsReversed.get(j); |
| 8 | + public static class Solution1 { |
| 9 | + public List<Integer> addToArrayForm(int[] A, int K) { |
| 10 | + List<Integer> kDigitsReversed = new ArrayList<>(); |
| 11 | + int divisor = 10; |
| 12 | + while (K != 0) { |
| 13 | + kDigitsReversed.add(K % divisor); |
| 14 | + K /= 10; |
| 15 | + } |
| 16 | + List<Integer> result = new ArrayList<>(); |
| 17 | + int prevFlow = 0; |
| 18 | + for (int i = A.length - 1, j = 0; i >= 0 || j < kDigitsReversed.size(); i--, j++) { |
| 19 | + int sum; |
| 20 | + if (i >= 0 && j < kDigitsReversed.size()) { |
| 21 | + sum = A[i] + kDigitsReversed.get(j); |
| 22 | + } else if (i >= 0) { |
| 23 | + sum = A[i]; |
| 24 | + } else { |
| 25 | + sum = kDigitsReversed.get(j); |
| 26 | + } |
| 27 | + int flow = 0; |
| 28 | + if (prevFlow != 0) { |
| 29 | + sum += prevFlow; |
| 30 | + } |
| 31 | + if (sum > 9) { |
| 32 | + flow = 1; |
| 33 | + } |
| 34 | + sum %= 10; |
| 35 | + prevFlow = flow; |
| 36 | + result.add(sum); |
| 37 | + } |
| 38 | + if (prevFlow != 0) { |
| 39 | + result.add(prevFlow); |
| 40 | + } |
| 41 | + Collections.reverse(result); |
| 42 | + return result; |
61 | 43 | }
|
62 |
| - int flow = 0; |
63 |
| - if (prevFlow != 0) { |
64 |
| - sum += prevFlow; |
65 |
| - } |
66 |
| - if (sum > 9) { |
67 |
| - flow = 1; |
68 |
| - } |
69 |
| - sum %= 10; |
70 |
| - prevFlow = flow; |
71 |
| - result.add(sum); |
72 |
| - } |
73 |
| - if (prevFlow != 0) { |
74 |
| - result.add(prevFlow); |
75 |
| - } |
76 |
| - Collections.reverse(result); |
77 |
| - return result; |
78 | 44 | }
|
79 |
| - } |
80 | 45 | }
|
0 commit comments