|
1 | 1 | package com.fishercoder.solutions;
|
2 | 2 |
|
3 |
| -/** |
4 |
| - * 1252. Cells with Odd Values in a Matrix |
5 |
| - * |
6 |
| - * Given n and m which are the dimensions of a matrix initialized by zeros and given an array indices where indices[i] = [ri, ci]. For each pair of [ri, ci] you have to increment all cells in row ri and column ci by 1. |
7 |
| - * Return the number of cells with odd values in the matrix after applying the increment to all indices. |
8 |
| - * |
9 |
| - * Example 1: |
10 |
| - * 0, 0, 0 1, 2, 1 1, 3, 1 |
11 |
| - * 0, 0, 0 0, 1, 0 1, 3 ,1 |
12 |
| - * |
13 |
| - * Input: n = 2, m = 3, indices = [[0,1],[1,1]] |
14 |
| - * Output: 6 |
15 |
| - * Explanation: Initial matrix = [[0,0,0],[0,0,0]]. |
16 |
| - * After applying first increment it becomes [[1,2,1],[0,1,0]]. |
17 |
| - * The final matrix will be [[1,3,1],[1,3,1]] which contains 6 odd numbers. |
18 |
| - * |
19 |
| - * Example 2: |
20 |
| - * 0, 0 0, 1 2, 2 |
21 |
| - * 0, 0 1, 2 2, 2 |
22 |
| - * |
23 |
| - * Input: n = 2, m = 2, indices = [[1,1],[0,0]] |
24 |
| - * Output: 0 |
25 |
| - * Explanation: Final matrix = [[2,2],[2,2]]. There is no odd number in the final matrix. |
26 |
| - * |
27 |
| - * |
28 |
| - * Constraints: |
29 |
| - * 1 <= n <= 50 |
30 |
| - * 1 <= m <= 50 |
31 |
| - * 1 <= indices.length <= 100 |
32 |
| - * 0 <= indices[i][0] < n |
33 |
| - * 0 <= indices[i][1] < m |
34 |
| - * */ |
35 | 3 | public class _1252 {
|
36 | 4 | public static class Solution1 {
|
37 | 5 | /**
|
38 | 6 | * Time: O(m*n + k) where k is the length of indices
|
39 | 7 | * Space: O(m*n)
|
40 |
| - * */ |
| 8 | + */ |
41 | 9 | public int oddCells(int n, int m, int[][] indices) {
|
42 | 10 | int[][] matrix = new int[n][m];
|
43 | 11 | for (int i = 0; i < indices.length; i++) {
|
|
0 commit comments