\n", - " **J_content**\n", - " | \n", - "\n", - " 6.76559\n", - " | \n", - "
\n", - " **GA**\n", - " | \n", - "\n",
- " [[ 6.42230511 -4.42912197 -2.09668207] \n", - " [ -4.42912197 19.46583748 19.56387138] \n", - " [ -2.09668207 19.56387138 20.6864624 ]]\n", - " | \n",
- "
\n", - " **J_style_layer**\n", - " | \n", - "\n", - " 9.19028\n", - " | \n", - "
\n", - " **J**\n", - " | \n", - "\n", - " 35.34667875478276\n", - " | \n", - "
\n", - " **Iteration 0 : **\n", - " | \n", - "\n",
- " total cost = 5.05035e+09 \n", - " content cost = 7877.67 \n", - " style cost = 1.26257e+08\n", - " | \n",
- "
-# **J_content** -# | -#-# 6.76559 -# | -#
-# **GA** -# | -#
-# [[ 6.42230511 -4.42912197 -2.09668207] -# [ -4.42912197 19.46583748 19.56387138] -# [ -2.09668207 19.56387138 20.6864624 ]] -# |
-#
-# **J_style_layer** -# | -#-# 9.19028 -# | -#
-# **J** -# | -#-# 35.34667875478276 -# | -#
-# **Iteration 0 : ** -# | -#
-# total cost = 5.05035e+09 -# content cost = 7877.67 -# style cost = 1.26257e+08 -# |
-#
\n", - " **scores[2]**\n", - " | \n", - "\n", - " 10.7506\n", - " | \n", - "
\n", - " **boxes[2]**\n", - " | \n", - "\n", - " [ 8.42653275 3.27136683 -0.5313437 -4.94137383]\n", - " | \n", - "
\n", - " **classes[2]**\n", - " | \n", - "\n", - " 7\n", - " | \n", - "
\n", - " **scores.shape**\n", - " | \n", - "\n", - " (?,)\n", - " | \n", - "
\n", - " **boxes.shape**\n", - " | \n", - "\n", - " (?, 4)\n", - " | \n", - "
\n", - " **classes.shape**\n", - " | \n", - "\n", - " (?,)\n", - " | \n", - "
\n", - " **iou = **\n", - " | \n", - "\n", - " 0.14285714285714285\n", - " | \n", - "
\n", - " **scores[2]**\n", - " | \n", - "\n", - " 6.9384\n", - " | \n", - "
\n", - " **boxes[2]**\n", - " | \n", - "\n", - " [-5.299932 3.13798141 4.45036697 0.95942086]\n", - " | \n", - "
\n", - " **classes[2]**\n", - " | \n", - "\n", - " -2.24527\n", - " | \n", - "
\n", - " **scores.shape**\n", - " | \n", - "\n", - " (10,)\n", - " | \n", - "
\n", - " **boxes.shape**\n", - " | \n", - "\n", - " (10, 4)\n", - " | \n", - "
\n", - " **classes.shape**\n", - " | \n", - "\n", - " (10,)\n", - " | \n", - "
\n", - " **scores[2]**\n", - " | \n", - "\n", - " 138.791\n", - " | \n", - "
\n", - " **boxes[2]**\n", - " | \n", - "\n", - " [ 1292.32971191 -278.52166748 3876.98925781 -835.56494141]\n", - " | \n", - "
\n", - " **classes[2]**\n", - " | \n", - "\n", - " 54\n", - " | \n", - "
\n", - " **scores.shape**\n", - " | \n", - "\n", - " (10,)\n", - " | \n", - "
\n", - " **boxes.shape**\n", - " | \n", - "\n", - " (10, 4)\n", - " | \n", - "
\n", - " **classes.shape**\n", - " | \n", - "\n", - " (10,)\n", - " | \n", - "
\n", - " **Found 7 boxes for test.jpg**\n", - " | \n", - "|
\n", - " **car**\n", - " | \n", - "\n", - " 0.60 (925, 285) (1045, 374)\n", - " | \n", - "
\n", - " **car**\n", - " | \n", - "\n", - " 0.66 (706, 279) (786, 350)\n", - " | \n", - "
\n", - " **bus**\n", - " | \n", - "\n", - " 0.67 (5, 266) (220, 407)\n", - " | \n", - "
\n", - " **car**\n", - " | \n", - "\n", - " 0.70 (947, 324) (1280, 705)\n", - " | \n", - "
\n", - " **car**\n", - " | \n", - "\n", - " 0.74 (159, 303) (346, 440)\n", - " | \n", - "
\n", - " **car**\n", - " | \n", - "\n", - " 0.80 (761, 282) (942, 412)\n", - " | \n", - "
\n", - " **car**\n", - " | \n", - "\n", - " 0.89 (367, 300) (745, 648)\n", - " | \n", - "
-# **scores[2]** -# | -#-# 10.7506 -# | -#
-# **boxes[2]** -# | -#-# [ 8.42653275 3.27136683 -0.5313437 -4.94137383] -# | -#
-# **classes[2]** -# | -#-# 7 -# | -#
-# **scores.shape** -# | -#-# (?,) -# | -#
-# **boxes.shape** -# | -#-# (?, 4) -# | -#
-# **classes.shape** -# | -#-# (?,) -# | -#
-# **iou = ** -# | -#-# 0.14285714285714285 -# | -#
-# **scores[2]** -# | -#-# 6.9384 -# | -#
-# **boxes[2]** -# | -#-# [-5.299932 3.13798141 4.45036697 0.95942086] -# | -#
-# **classes[2]** -# | -#-# -2.24527 -# | -#
-# **scores.shape** -# | -#-# (10,) -# | -#
-# **boxes.shape** -# | -#-# (10, 4) -# | -#
-# **classes.shape** -# | -#-# (10,) -# | -#
-# **scores[2]** -# | -#-# 138.791 -# | -#
-# **boxes[2]** -# | -#-# [ 1292.32971191 -278.52166748 3876.98925781 -835.56494141] -# | -#
-# **classes[2]** -# | -#-# 54 -# | -#
-# **scores.shape** -# | -#-# (10,) -# | -#
-# **boxes.shape** -# | -#-# (10, 4) -# | -#
-# **classes.shape** -# | -#-# (10,) -# | -#
-# **Found 7 boxes for test.jpg** -# | -#|
-# **car** -# | -#-# 0.60 (925, 285) (1045, 374) -# | -#
-# **car** -# | -#-# 0.66 (706, 279) (786, 350) -# | -#
-# **bus** -# | -#-# 0.67 (5, 266) (220, 407) -# | -#
-# **car** -# | -#-# 0.70 (947, 324) (1280, 705) -# | -#
-# **car** -# | -#-# 0.74 (159, 303) (346, 440) -# | -#
-# **car** -# | -#-# 0.80 (761, 282) (942, 412) -# | -#
-# **car** -# | -#-# 0.89 (367, 300) (745, 648) -# | -#
**W1** | -#[[ 0.01624345 -0.00611756 -0.00528172] -# [-0.01072969 0.00865408 -0.02301539]] | -#
**b1** | -#[[ 0.] -# [ 0.]] | -#
**W2** | -#[[ 0.01744812 -0.00761207]] | -#
**b2** | -#[[ 0.]] | -#
-# | **Shape of W** | -#**Shape of b** | -#**Activation** | -#**Shape of Activation** | -#
**Layer 1** | -#$(n^{[1]},12288)$ | -#$(n^{[1]},1)$ | -#$Z^{[1]} = W^{[1]} X + b^{[1]} $ | -# -#$(n^{[1]},209)$ | -#
**Layer 2** | -#$(n^{[2]}, n^{[1]})$ | -#$(n^{[2]},1)$ | -#$Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ | -#$(n^{[2]}, 209)$ | -#
$\vdots$ | -#$\vdots$ | -#$\vdots$ | -#$\vdots$ | -#$\vdots$ | -#
**Layer L-1** | -#$(n^{[L-1]}, n^{[L-2]})$ | -#$(n^{[L-1]}, 1)$ | -#$Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ | -#$(n^{[L-1]}, 209)$ | -#
**Layer L** | -#$(n^{[L]}, n^{[L-1]})$ | -#$(n^{[L]}, 1)$ | -#$Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$ | -#$(n^{[L]}, 209)$ | -#
**W1** | -#[[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] -# [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] -# [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] -# [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] | -#
**b1** | -#[[ 0.] -# [ 0.] -# [ 0.] -# [ 0.]] | -#
**W2** | -#[[-0.01185047 -0.0020565 0.01486148 0.00236716] -# [-0.01023785 -0.00712993 0.00625245 -0.00160513] -# [-0.00768836 -0.00230031 0.00745056 0.01976111]] | -#
**b2** | -#[[ 0.] -# [ 0.] -# [ 0.]] | -#
**Z** | -#[[ 3.26295337 -1.23429987]] | -#
**With sigmoid: A ** | -#[[ 0.96890023 0.11013289]] | -#
**With ReLU: A ** | -#[[ 3.43896131 0. ]] | -#
**AL** | -#[[ 0.03921668 0.70498921 0.19734387 0.04728177]] | -#
**Length of caches list ** | -#3 | -#
**cost** | -#0.41493159961539694 | -#
**dA_prev** | -#[[ 0.51822968 -0.19517421] -# [-0.40506361 0.15255393] -# [ 2.37496825 -0.89445391]] | -#
**dW** | -#[[-0.10076895 1.40685096 1.64992505]] | -#
**db** | -#[[ 0.50629448]] | -#
dA_prev | -#[[ 0.11017994 0.01105339] -# [ 0.09466817 0.00949723] -# [-0.05743092 -0.00576154]] | -# -#
dW | -#[[ 0.10266786 0.09778551 -0.01968084]] | -#
db | -#[[-0.05729622]] | -#
dA_prev | -#[[ 0.44090989 0. ] -# [ 0.37883606 0. ] -# [-0.2298228 0. ]] | -# -#
dW | -#[[ 0.44513824 0.37371418 -0.10478989]] | -#
db | -#[[-0.20837892]] | -#
dW1 | -#[[ 0.41010002 0.07807203 0.13798444 0.10502167] -# [ 0. 0. 0. 0. ] -# [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] | -#
db1 | -#[[-0.22007063] -# [ 0. ] -# [-0.02835349]] | -#
dA1 | -#[[ 0.12913162 -0.44014127] -# [-0.14175655 0.48317296] -# [ 0.01663708 -0.05670698]] | -# -#
W1 | -#[[-0.59562069 -0.09991781 -2.14584584 1.82662008] -# [-1.76569676 -0.80627147 0.51115557 -1.18258802] -# [-1.0535704 -0.86128581 0.68284052 2.20374577]] | -#
b1 | -#[[-0.04659241] -# [-1.28888275] -# [ 0.53405496]] | -#
W2 | -#[[-0.55569196 0.0354055 1.32964895]] | -#
b2 | -#[[-0.84610769]] | -#
\n", - " X = Tensor(\"Placeholder:0\", shape=(?, 64, 64, 3), dtype=float32)\n", - "\n", - " | \n", - "
\n", - " Y = Tensor(\"Placeholder_1:0\", shape=(?, 6), dtype=float32)\n", - "\n", - " | \n", - "
\n", - " W1 = \n", - " | \n", - "\n",
- "[ 0.00131723 0.14176141 -0.04434952 0.09197326 0.14984085 -0.03514394 \n", - " -0.06847463 0.05245192]\n", - " | \n",
- "
\n", - " W2 = \n", - " | \n", - "\n",
- "[-0.08566415 0.17750949 0.11974221 0.16773748 -0.0830943 -0.08058 \n", - " -0.00577033 -0.14643836 0.24162132 -0.05857408 -0.19055021 0.1345228 \n", - " -0.22779644 -0.1601823 -0.16117483 -0.10286498]\n", - " | \n",
- "
\n", - " Z3 =\n", - " | \n", - "\n",
- " [[-0.44670227 -1.57208765 -1.53049231 -2.31013036 -1.29104376 0.46852064] \n", - " [-0.17601591 -1.57972014 -1.4737016 -2.61672091 -1.00810647 0.5747785 ]]\n", - " | \n",
- "
\n", - " cost =\n", - " | \n", - " \n", - "\n", - " 2.91034\n", - " | \n", - "
\n", - " **Cost after epoch 0 =**\n", - " | \n", - "\n", - "\n", - " 1.917929\n", - " | \n", - "
\n", - " **Cost after epoch 5 =**\n", - " | \n", - "\n", - "\n", - " 1.506757\n", - " | \n", - "
\n", - " **Train Accuracy =**\n", - " | \n", - "\n", - "\n", - " 0.940741\n", - " | \n", - "
\n", - " **Test Accuracy =**\n", - " | \n", - "\n", - "\n", - " 0.783333\n", - " | \n", - "
-# X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32) -# -# | -#
-# Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32) -# -# | -#
-# W1 = -# | -#
-# [ 0.00131723 0.14176141 -0.04434952 0.09197326 0.14984085 -0.03514394 -# -0.06847463 0.05245192] -# |
-#
-# W2 = -# | -#
-# [-0.08566415 0.17750949 0.11974221 0.16773748 -0.0830943 -0.08058 -# -0.00577033 -0.14643836 0.24162132 -0.05857408 -0.19055021 0.1345228 -# -0.22779644 -0.1601823 -0.16117483 -0.10286498] -# |
-#
-# Z3 = -# | -#
-# [[-0.44670227 -1.57208765 -1.53049231 -2.31013036 -1.29104376 0.46852064] -# [-0.17601591 -1.57972014 -1.4737016 -2.61672091 -1.00810647 0.5747785 ]] -# |
-#
-# cost = -# | -# -#-# 2.91034 -# | -#
-# **Cost after epoch 0 =** -# | -# -#-# 1.917929 -# | -#
-# **Cost after epoch 5 =** -# | -# -#-# 1.506757 -# | -#
-# **Train Accuracy =** -# | -# -#-# 0.940741 -# | -#
-# **Test Accuracy =** -# | -# -#-# 0.783333 -# | -#
-# **x.shape**: -# | -#-# (4, 3, 3, 2) -# | -#
-# **x_pad.shape**: -# | -#-# (4, 7, 7, 2) -# | -#
-# **x[1,1]**: -# | -#-# [[ 0.90085595 -0.68372786] -# [-0.12289023 -0.93576943] -# [-0.26788808 0.53035547]] -# | -#
-# **x_pad[1,1]**: -# | -#-# [[ 0. 0.] -# [ 0. 0.] -# [ 0. 0.] -# [ 0. 0.] -# [ 0. 0.] -# [ 0. 0.] -# [ 0. 0.]] -# | -#
-# **Z** -# | -#-# -6.99908945068 -# | -#
-# **Z's mean** -# | -#-# 0.0489952035289 -# | -#
-# **Z[3,2,1]** -# | -#-# [-0.61490741 -6.7439236 -2.55153897 1.75698377 3.56208902 0.53036437 -# 5.18531798 8.75898442] -# | -#
-# **cache_conv[0][1][2][3]** -# | -#-# [-0.20075807 0.18656139 0.41005165] -# | -#
-# ![]() | -# -# |
-# ![]() | -# |
-# A = -# | -#-# [[[[ 1.74481176 0.86540763 1.13376944]]] -# -# -# [[[ 1.13162939 1.51981682 2.18557541]]]] -# -# | -#
-# A = -# | -#-# [[[[ 0.02105773 -0.20328806 -0.40389855]]] -# -# -# [[[-0.22154621 0.51716526 0.48155844]]]] -# -# | -#
-# **dA_mean** -# | -#-# 1.45243777754 -# | -#
-# **dW_mean** -# | -#-# 1.72699145831 -# | -#
-# **db_mean** -# | -#-# 7.83923256462 -# | -#
-# -# **x =** -# | -# -#
-#
-# [[ 1.62434536 -0.61175641 -0.52817175] -# [-1.07296862 0.86540763 -2.3015387 ]] -# -# |
-#
-# **mask =** -# | -#
-# [[ True False False] -# [False False False]] -# |
-#
-# distributed_value = -# | -#
-# [[ 0.5 0.5]
-# -# [ 0.5 0.5]] -# |
-#
-# -# **mean of dA =** -# | -# -#-# -# 0.145713902729 -# -# | -#
-# **dA_prev[1,1] =** -# | -#
-# [[ 0. 0. ] -# [ 5.05844394 -1.68282702] -# [ 0. 0. ]] -# |
-#
-# -# **mean of dA =** -# | -# -#-# -# 0.145713902729 -# -# | -#
-# **dA_prev[1,1] =** -# | -#
-# [[ 0.08485462 0.2787552 ] -# [ 1.26461098 -0.25749373] -# [ 1.17975636 -0.53624893]] -# |
-#
**Cost after iteration 0** | -#0.6930497356599888 | -#
**Cost after iteration 100** | -#0.6464320953428849 | -#
**...** | -#... | -#
**Cost after iteration 2400** | -#0.048554785628770206 | -#
**Accuracy** | -#1.0 | -#
**Accuracy** | -#0.72 | -#
**Cost after iteration 0** | -#0.771749 | -#
**Cost after iteration 100** | -#0.672053 | -#
**...** | -#... | -#
**Cost after iteration 2400** | -#0.092878 | -#
-# **Train Accuracy** -# | -#-# 0.985645933014 -# | -#
**Test Accuracy** | -#0.8 | -#
\n", - " **loss**\n", - " | \n", - "\n", - " 528.143\n", - " | \n", - "
\n", - " **It's younes, welcome home!**\n", - " | \n", - "\n", - " (0.65939283, True)\n", - " | \n", - "
\n", - " **It's not kian, please go away**\n", - " | \n", - "\n", - " (0.86224014, False)\n", - " | \n", - "
\n", - " **it's younes, the distance is 0.659393**\n", - " | \n", - "\n", - " (0.65939283, 'younes')\n", - " | \n", - "
-# **loss** -# | -#-# 528.143 -# | -#
-# **It's younes, welcome home!** -# | -#-# (0.65939283, True) -# | -#
-# **It's not kian, please go away** -# | -#-# (0.86224014, False) -# | -#
-# **it's younes, the distance is 0.659393** -# | -#-# (0.65939283, 'younes') -# | -#
** J ** | -#8 | -#
** dtheta ** | -#2 | -#
** difference ** | -#2.9193358103083e-10 | -#
** There is a mistake in the backward propagation!** | -#difference = 0.285093156781 | -#
-# **W1** -# | -#-# [[ 0. 0. 0.] -# [ 0. 0. 0.]] -# | -#
-# **b1** -# | -#-# [[ 0.] -# [ 0.]] -# | -#
-# **W2** -# | -#-# [[ 0. 0.]] -# | -#
-# **b2** -# | -#-# [[ 0.]] -# | -#
-# **W1** -# | -#-# [[ 17.88628473 4.36509851 0.96497468] -# [-18.63492703 -2.77388203 -3.54758979]] -# | -#
-# **b1** -# | -#-# [[ 0.] -# [ 0.]] -# | -#
-# **W2** -# | -#-# [[-0.82741481 -6.27000677]] -# | -#
-# **b2** -# | -#-# [[ 0.]] -# | -#
-# **W1** -# | -#-# [[ 1.78862847 0.43650985] -# [ 0.09649747 -1.8634927 ] -# [-0.2773882 -0.35475898] -# [-0.08274148 -0.62700068]] -# | -#
-# **b1** -# | -#-# [[ 0.] -# [ 0.] -# [ 0.] -# [ 0.]] -# | -#
-# **W2** -# | -#-# [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] -# | -#
-# **b2** -# | -#-# [[ 0.]] -# | -#
-# **Model** -# | -#-# **Train accuracy** -# | -#-# **Problem/Comment** -# | -# -#-# 3-layer NN with zeros initialization -# | -#-# 50% -# | -#-# fails to break symmetry -# | -#
-# 3-layer NN with large random initialization -# | -#-# 83% -# | -#-# too large weights -# | -#
-# 3-layer NN with He initialization -# | -#-# 99% -# | -#-# recommended method -# | -#
**m_train** | -#209 | -#
**m_test** | -#50 | -#
**num_px** | -#64 | -#
**train_set_x_flatten shape** | -#(12288, 209) | -#
**train_set_y shape** | -#(1, 209) | -#
**test_set_x_flatten shape** | -#(12288, 50) | -#
**test_set_y shape** | -#(1, 50) | -#
**sanity check after reshaping** | -#[17 31 56 22 33] | -#
**sigmoid([0, 2])** | -#[ 0.5 0.88079708] | -#
** w ** | -#[[ 0.] -# [ 0.]] | -#
** b ** | -#0 | -#
** dw ** | -#[[ 0.99845601] -# [ 2.39507239]] | -#
** db ** | -#0.00145557813678 | -#
** cost ** | -#5.801545319394553 | -#
**w** | -#[[ 0.19033591] -# [ 0.12259159]] | -#
**b** | -#1.92535983008 | -#
**dw** | -#[[ 0.67752042] -# [ 1.41625495]] | -#
**db** | -#0.219194504541 | -#
-# **predictions** -# | -#-# [[ 1. 1. 0.]] -# | -#
**Cost after iteration 0 ** | -#0.693147 | -#
|
-# |
-#
**Train Accuracy** | -#99.04306220095694 % | -#
**Test Accuracy** | -#70.0 % | -#
**W1** | -#[[ 1.63535156 -0.62320365 -0.53718766] -# [-1.07799357 0.85639907 -2.29470142]] | -#
**b1** | -#[[ 1.74604067] -# [-0.75184921]] | -#
**W2** | -#[[ 0.32171798 -0.25467393 1.46902454] -# [-2.05617317 -0.31554548 -0.3756023 ] -# [ 1.1404819 -1.09976462 -0.1612551 ]] | -#
**b2** | -#[[-0.88020257] -# [ 0.02561572] -# [ 0.57539477]] | -#
**shape of the 1st mini_batch_X** | -#(12288, 64) | -#
**shape of the 2nd mini_batch_X** | -#(12288, 64) | -#
**shape of the 3rd mini_batch_X** | -#(12288, 20) | -#
**shape of the 1st mini_batch_Y** | -#(1, 64) | -#
**shape of the 2nd mini_batch_Y** | -#(1, 64) | -#
**shape of the 3rd mini_batch_Y** | -#(1, 20) | -#
**mini batch sanity check** | -#[ 0.90085595 -0.7612069 0.2344157 ] | -#
**v["dW1"]** | -#[[ 0. 0. 0.] -# [ 0. 0. 0.]] | -#
**v["db1"]** | -#[[ 0.] -# [ 0.]] | -#
**v["dW2"]** | -#[[ 0. 0. 0.] -# [ 0. 0. 0.] -# [ 0. 0. 0.]] | -#
**v["db2"]** | -#[[ 0.] -# [ 0.] -# [ 0.]] | -#
**W1** | -#[[ 1.62544598 -0.61290114 -0.52907334] -# [-1.07347112 0.86450677 -2.30085497]] | -#
**b1** | -#[[ 1.74493465] -# [-0.76027113]] | -#
**W2** | -#[[ 0.31930698 -0.24990073 1.4627996 ] -# [-2.05974396 -0.32173003 -0.38320915] -# [ 1.13444069 -1.0998786 -0.1713109 ]] | -#
**b2** | -#[[-0.87809283] -# [ 0.04055394] -# [ 0.58207317]] | -#
**v["dW1"]** | -#[[-0.11006192 0.11447237 0.09015907] -# [ 0.05024943 0.09008559 -0.06837279]] | -#
**v["db1"]** | -#[[-0.01228902] -# [-0.09357694]] | -#
**v["dW2"]** | -#[[-0.02678881 0.05303555 -0.06916608] -# [-0.03967535 -0.06871727 -0.08452056] -# [-0.06712461 -0.00126646 -0.11173103]] | -#
**v["db2"]** | -#[[ 0.02344157] -# [ 0.16598022] -# [ 0.07420442]] | -#
**v["dW1"]** | -#[[ 0. 0. 0.] -# [ 0. 0. 0.]] | -#
**v["db1"]** | -#[[ 0.] -# [ 0.]] | -#
**v["dW2"]** | -#[[ 0. 0. 0.] -# [ 0. 0. 0.] -# [ 0. 0. 0.]] | -#
**v["db2"]** | -#[[ 0.] -# [ 0.] -# [ 0.]] | -#
**s["dW1"]** | -#[[ 0. 0. 0.] -# [ 0. 0. 0.]] | -#
**s["db1"]** | -#[[ 0.] -# [ 0.]] | -#
**s["dW2"]** | -#[[ 0. 0. 0.] -# [ 0. 0. 0.] -# [ 0. 0. 0.]] | -#
**s["db2"]** | -#[[ 0.] -# [ 0.] -# [ 0.]] | -#
**W1** | -#[[ 1.63178673 -0.61919778 -0.53561312] -# [-1.08040999 0.85796626 -2.29409733]] | -#
**b1** | -#[[ 1.75225313] -# [-0.75376553]] | -#
**W2** | -#[[ 0.32648046 -0.25681174 1.46954931] -# [-2.05269934 -0.31497584 -0.37661299] -# [ 1.14121081 -1.09245036 -0.16498684]] | -#
**b2** | -#[[-0.88529978] -# [ 0.03477238] -# [ 0.57537385]] | -#
**v["dW1"]** | -#[[-0.11006192 0.11447237 0.09015907] -# [ 0.05024943 0.09008559 -0.06837279]] | -#
**v["db1"]** | -#[[-0.01228902] -# [-0.09357694]] | -#
**v["dW2"]** | -#[[-0.02678881 0.05303555 -0.06916608] -# [-0.03967535 -0.06871727 -0.08452056] -# [-0.06712461 -0.00126646 -0.11173103]] | -#
**v["db2"]** | -#[[ 0.02344157] -# [ 0.16598022] -# [ 0.07420442]] | -#
**s["dW1"]** | -#[[ 0.00121136 0.00131039 0.00081287] -# [ 0.0002525 0.00081154 0.00046748]] | -#
**s["db1"]** | -#[[ 1.51020075e-05] -# [ 8.75664434e-04]] | -#
**s["dW2"]** | -#[[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] -# [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] -# [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] | -#
**s["db2"]** | -#[[ 5.49507194e-05] -# [ 2.75494327e-03] -# [ 5.50629536e-04]] | -#
-# **optimization method** -# | -#-# **accuracy** -# | -#-# **cost shape** -# | -# -#-# Gradient descent -# | -#-# 79.7% -# | -#-# oscillations -# | -#
-# Momentum -# | -#-# 79.7% -# | -#-# oscillations -# | -#
-# Adam -# | -#-# 94% -# | -#-# smoother -# | -#
**shape of X** | -#(2, 400) | -#
**shape of Y** | -#(1, 400) | -#
**m** | -#400 | -#
**Accuracy** | -#47% | -#
**n_x** | -#5 | -#
**n_h** | -#4 | -#
**n_y** | -#2 | -#
**W1** | -#[[-0.00416758 -0.00056267] -# [-0.02136196 0.01640271] -# [-0.01793436 -0.00841747] -# [ 0.00502881 -0.01245288]] | -#
**b1** | -#[[ 0.] -# [ 0.] -# [ 0.] -# [ 0.]] | -#
**W2** | -#[[-0.01057952 -0.00909008 0.00551454 0.02292208]] | -#
**b2** | -#[[ 0.]] | -#
0.262818640198 0.091999045227 -1.30766601287 0.212877681719 | -#
**cost** | -#0.693058761... | -#
**dW1** | -#[[ 0.00301023 -0.00747267] -# [ 0.00257968 -0.00641288] -# [-0.00156892 0.003893 ] -# [-0.00652037 0.01618243]] | -#
**db1** | -#[[ 0.00176201] -# [ 0.00150995] -# [-0.00091736] -# [-0.00381422]] | -#
**dW2** | -#[[ 0.00078841 0.01765429 -0.00084166 -0.01022527]] | -#
**db2** | -#[[-0.16655712]] | -#
**W1** | -#[[-0.00643025 0.01936718] -# [-0.02410458 0.03978052] -# [-0.01653973 -0.02096177] -# [ 0.01046864 -0.05990141]] | -#
**b1** | -#[[ -1.02420756e-06] -# [ 1.27373948e-05] -# [ 8.32996807e-07] -# [ -3.20136836e-06]] | -#
**W2** | -#[[-0.01041081 -0.04463285 0.01758031 0.04747113]] | -#
**b2** | -#[[ 0.00010457]] | -#
-# **cost after iteration 0** -# | -#-# 0.692739 -# | -#
-# |
-#
-# |
-#
**W1** | -#[[-0.65848169 1.21866811] -# [-0.76204273 1.39377573] -# [ 0.5792005 -1.10397703] -# [ 0.76773391 -1.41477129]] | -#
**b1** | -#[[ 0.287592 ] -# [ 0.3511264 ] -# [-0.2431246 ] -# [-0.35772805]] | -#
**W2** | -#[[-2.45566237 -3.27042274 2.00784958 3.36773273]] | -#
**b2** | -#[[ 0.20459656]] | -#
**predictions mean** | -#0.666666666667 | -#
**Cost after iteration 9000** | -#0.218607 | -#
**Accuracy** | -#90% | -#
** basic_sigmoid(3) ** | -#0.9525741268224334 | -#
**sigmoid([1,2,3])** | -#array([ 0.73105858, 0.88079708, 0.95257413]) | -#
**sigmoid_derivative([1,2,3])** | -#[ 0.19661193 0.10499359 0.04517666] | -#
**image2vector(image)** | -#[[ 0.67826139] -# [ 0.29380381] -# [ 0.90714982] -# [ 0.52835647] -# [ 0.4215251 ] -# [ 0.45017551] -# [ 0.92814219] -# [ 0.96677647] -# [ 0.85304703] -# [ 0.52351845] -# [ 0.19981397] -# [ 0.27417313] -# [ 0.60659855] -# [ 0.00533165] -# [ 0.10820313] -# [ 0.49978937] -# [ 0.34144279] -# [ 0.94630077]] | -#
**normalizeRows(x)** | -#[[ 0. 0.6 0.8 ] -# [ 0.13736056 0.82416338 0.54944226]] | -#
**softmax(x)** | -#[[ 9.80897665e-01 8.94462891e-04 1.79657674e-02 1.21052389e-04 -# 1.21052389e-04] -# [ 8.78679856e-01 1.18916387e-01 8.01252314e-04 8.01252314e-04 -# 8.01252314e-04]] | -#
**L1** | -#1.1 | -#
**L2** | -#0.43 | -#
-# **cost** -# | -#-# 1.78648594516 -# | -# -#
-# **dW1** -# | -#-# [[-0.25604646 0.12298827 -0.28297129] -# [-0.17706303 0.34536094 -0.4410571 ]] -# | -#
-# **dW2** -# | -#-# [[ 0.79276486 0.85133918] -# [-0.0957219 -0.01720463] -# [-0.13100772 -0.03750433]] -# | -#
-# **dW3** -# | -#-# [[-1.77691347 -0.11832879 -0.09397446]] -# | -#
-# **A3** -# | -#-# [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]] -# | -# -#
-# **dA1** -# | -#-# [[ 0.36544439 0. -0.00188233 0. -0.17408748] -# [ 0.65515713 0. -0.00337459 0. -0. ]] -# | -# -#
-# **dA2** -# | -#-# [[ 0.58180856 0. -0.00299679 0. -0.27715731] -# [ 0. 0.53159854 -0. 0.53159854 -0.34089673] -# [ 0. 0. -0.00292733 0. -0. ]] -# | -# -#
-# **model** -# | -#-# **train accuracy** -# | -#-# **test accuracy** -# | -# -#-# 3-layer NN without regularization -# | -#-# 95% -# | -#-# 91.5% -# | -#
-# 3-layer NN with L2-regularization -# | -#-# 94% -# | -#-# 93% -# | -#
-# 3-layer NN with dropout -# | -#-# 93% -# | -#-# 95% -# | -#
\n", - " **out**\n", - " | \n", - "\n", - " [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003]\n", - " | \n", - "
\n", - " **out**\n", - " | \n", - "\n", - " [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603]\n", - " | \n", - "
\n", - " ** Epoch 1/2**\n", - " | \n", - "\n", - " loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours.\n", - " | \n", - "
\n", - " ** Epoch 2/2**\n", - " | \n", - "\n", - " loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing.\n", - " | \n", - "
\n", - " **Test Accuracy**\n", - " | \n", - "\n", - " between 0.16 and 0.25\n", - " | \n", - "
-# **out** -# | -#-# [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003] -# | -#
-# **out** -# | -#-# [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603] -# | -#
-# ** Epoch 1/2** -# | -#-# loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours. -# | -#
-# ** Epoch 2/2** -# | -#-# loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing. -# | -#
-# **Test Accuracy** -# | -#-# between 0.16 and 0.25 -# | -#