|
19 | 19 | },
|
20 | 20 | {
|
21 | 21 | "cell_type": "code",
|
22 |
| - "execution_count": 5, |
| 22 | + "execution_count": 25, |
23 | 23 | "metadata": {
|
24 | 24 | "collapsed": false
|
25 | 25 | },
|
26 | 26 | "outputs": [],
|
27 | 27 | "source": [
|
28 |
| - "import pandas as pd" |
| 28 | + "import pandas as pd\n", |
| 29 | + "import numpy as np" |
29 | 30 | ]
|
30 | 31 | },
|
31 | 32 | {
|
|
44 | 45 | },
|
45 | 46 | {
|
46 | 47 | "cell_type": "code",
|
47 |
| - "execution_count": 6, |
| 48 | + "execution_count": 3, |
48 | 49 | "metadata": {
|
49 | 50 | "collapsed": false
|
50 | 51 | },
|
|
64 | 65 | },
|
65 | 66 | {
|
66 | 67 | "cell_type": "code",
|
67 |
| - "execution_count": 32, |
| 68 | + "execution_count": 4, |
68 | 69 | "metadata": {
|
69 | 70 | "collapsed": false,
|
70 | 71 | "scrolled": false
|
|
196 | 197 | "9 [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... $9.25 "
|
197 | 198 | ]
|
198 | 199 | },
|
199 |
| - "execution_count": 32, |
| 200 | + "execution_count": 4, |
200 | 201 | "metadata": {},
|
201 | 202 | "output_type": "execute_result"
|
202 | 203 | }
|
|
215 | 216 | },
|
216 | 217 | {
|
217 | 218 | "cell_type": "code",
|
218 |
| - "execution_count": 111, |
| 219 | + "execution_count": 5, |
219 | 220 | "metadata": {
|
220 | 221 | "collapsed": false
|
221 | 222 | },
|
|
242 | 243 | "4622"
|
243 | 244 | ]
|
244 | 245 | },
|
245 |
| - "execution_count": 111, |
| 246 | + "execution_count": 5, |
246 | 247 | "metadata": {},
|
247 | 248 | "output_type": "execute_result"
|
248 | 249 | }
|
|
265 | 266 | },
|
266 | 267 | {
|
267 | 268 | "cell_type": "code",
|
268 |
| - "execution_count": 109, |
| 269 | + "execution_count": 6, |
269 | 270 | "metadata": {
|
270 | 271 | "collapsed": false
|
271 | 272 | },
|
|
276 | 277 | "5"
|
277 | 278 | ]
|
278 | 279 | },
|
279 |
| - "execution_count": 109, |
| 280 | + "execution_count": 6, |
280 | 281 | "metadata": {},
|
281 | 282 | "output_type": "execute_result"
|
282 | 283 | }
|
|
294 | 295 | },
|
295 | 296 | {
|
296 | 297 | "cell_type": "code",
|
297 |
| - "execution_count": 9, |
| 298 | + "execution_count": 7, |
298 | 299 | "metadata": {
|
299 | 300 | "collapsed": false
|
300 | 301 | },
|
|
307 | 308 | " dtype='object')"
|
308 | 309 | ]
|
309 | 310 | },
|
310 |
| - "execution_count": 9, |
| 311 | + "execution_count": 7, |
311 | 312 | "metadata": {},
|
312 | 313 | "output_type": "execute_result"
|
313 | 314 | }
|
|
325 | 326 | },
|
326 | 327 | {
|
327 | 328 | "cell_type": "code",
|
328 |
| - "execution_count": 10, |
| 329 | + "execution_count": 8, |
329 | 330 | "metadata": {
|
330 | 331 | "collapsed": false
|
331 | 332 | },
|
|
336 | 337 | "RangeIndex(start=0, stop=4622, step=1)"
|
337 | 338 | ]
|
338 | 339 | },
|
339 |
| - "execution_count": 10, |
| 340 | + "execution_count": 8, |
340 | 341 | "metadata": {},
|
341 | 342 | "output_type": "execute_result"
|
342 | 343 | }
|
|
354 | 355 | },
|
355 | 356 | {
|
356 | 357 | "cell_type": "code",
|
357 |
| - "execution_count": 139, |
| 358 | + "execution_count": 41, |
358 | 359 | "metadata": {
|
359 | 360 | "collapsed": false
|
360 | 361 | },
|
361 | 362 | "outputs": [
|
362 | 363 | {
|
363 | 364 | "data": {
|
| 365 | + "text/html": [ |
| 366 | + "<div>\n", |
| 367 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 368 | + " <thead>\n", |
| 369 | + " <tr style=\"text-align: right;\">\n", |
| 370 | + " <th></th>\n", |
| 371 | + " <th>order_id</th>\n", |
| 372 | + " <th>quantity</th>\n", |
| 373 | + " </tr>\n", |
| 374 | + " <tr>\n", |
| 375 | + " <th>item_name</th>\n", |
| 376 | + " <th></th>\n", |
| 377 | + " <th></th>\n", |
| 378 | + " </tr>\n", |
| 379 | + " </thead>\n", |
| 380 | + " <tbody>\n", |
| 381 | + " <tr>\n", |
| 382 | + " <th>Chicken Bowl</th>\n", |
| 383 | + " <td>713926</td>\n", |
| 384 | + " <td>761</td>\n", |
| 385 | + " </tr>\n", |
| 386 | + " </tbody>\n", |
| 387 | + "</table>\n", |
| 388 | + "</div>" |
| 389 | + ], |
364 | 390 | "text/plain": [
|
365 |
| - "Chicken Bowl 761\n", |
366 |
| - "*Don't forget to include the quantity in your calculations!" |
| 391 | + " order_id quantity\n", |
| 392 | + "item_name \n", |
| 393 | + "Chicken Bowl 713926 761" |
367 | 394 | ]
|
368 | 395 | },
|
369 |
| - "execution_count": 139, |
| 396 | + "execution_count": 41, |
370 | 397 | "metadata": {},
|
371 | 398 | "output_type": "execute_result"
|
372 | 399 | }
|
373 | 400 | ],
|
374 | 401 | "source": [
|
375 |
| - "c = chipo.groupby('item_name')", |
376 |
| - "c = c.sum()", |
377 |
| - "c = c.sort_values(['quantity'], ascending=False)", |
| 402 | + "c = chipo.groupby('item_name')\n", |
| 403 | + "c = c.sum()\n", |
| 404 | + "c = c.sort_values(['quantity'], ascending=False)\n", |
378 | 405 | "c.head(1)"
|
379 | 406 | ]
|
380 | 407 | },
|
|
387 | 414 | },
|
388 | 415 | {
|
389 | 416 | "cell_type": "code",
|
390 |
| - "execution_count": 93, |
| 417 | + "execution_count": 21, |
391 | 418 | "metadata": {
|
392 | 419 | "collapsed": false
|
393 | 420 | },
|
394 | 421 | "outputs": [
|
395 | 422 | {
|
396 | 423 | "data": {
|
| 424 | + "text/html": [ |
| 425 | + "<div>\n", |
| 426 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 427 | + " <thead>\n", |
| 428 | + " <tr style=\"text-align: right;\">\n", |
| 429 | + " <th></th>\n", |
| 430 | + " <th>order_id</th>\n", |
| 431 | + " <th>quantity</th>\n", |
| 432 | + " </tr>\n", |
| 433 | + " <tr>\n", |
| 434 | + " <th>item_name</th>\n", |
| 435 | + " <th></th>\n", |
| 436 | + " <th></th>\n", |
| 437 | + " </tr>\n", |
| 438 | + " </thead>\n", |
| 439 | + " <tbody>\n", |
| 440 | + " <tr>\n", |
| 441 | + " <th>Chicken Bowl</th>\n", |
| 442 | + " <td>713926</td>\n", |
| 443 | + " <td>761</td>\n", |
| 444 | + " </tr>\n", |
| 445 | + " </tbody>\n", |
| 446 | + "</table>\n", |
| 447 | + "</div>" |
| 448 | + ], |
397 | 449 | "text/plain": [
|
398 |
| - "761" |
| 450 | + " order_id quantity\n", |
| 451 | + "item_name \n", |
| 452 | + "Chicken Bowl 713926 761" |
399 | 453 | ]
|
400 | 454 | },
|
401 |
| - "execution_count": 93, |
| 455 | + "execution_count": 21, |
402 | 456 | "metadata": {},
|
403 | 457 | "output_type": "execute_result"
|
404 | 458 | }
|
405 | 459 | ],
|
406 | 460 | "source": [
|
407 |
| - "c = chipo.groupby('item_name')", |
408 |
| - "c = c.sum()", |
409 |
| - "c = c.sort_values(['quantity'], ascending=False)", |
| 461 | + "c = chipo.groupby('item_name')\n", |
| 462 | + "c = c.sum()\n", |
| 463 | + "c = c.sort_values(['quantity'], ascending=False)\n", |
410 | 464 | "c.head(1)"
|
411 |
| - ] |
| 465 | + ] |
412 | 466 | },
|
413 | 467 | {
|
414 | 468 | "cell_type": "markdown",
|
|
419 | 473 | },
|
420 | 474 | {
|
421 | 475 | "cell_type": "code",
|
422 |
| - "execution_count": 12, |
| 476 | + "execution_count": 23, |
423 | 477 | "metadata": {
|
424 | 478 | "collapsed": false
|
425 | 479 | },
|
426 | 480 | "outputs": [
|
427 | 481 | {
|
428 | 482 | "data": {
|
| 483 | + "text/html": [ |
| 484 | + "<div>\n", |
| 485 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 486 | + " <thead>\n", |
| 487 | + " <tr style=\"text-align: right;\">\n", |
| 488 | + " <th></th>\n", |
| 489 | + " <th>order_id</th>\n", |
| 490 | + " <th>quantity</th>\n", |
| 491 | + " </tr>\n", |
| 492 | + " <tr>\n", |
| 493 | + " <th>choice_description</th>\n", |
| 494 | + " <th></th>\n", |
| 495 | + " <th></th>\n", |
| 496 | + " </tr>\n", |
| 497 | + " </thead>\n", |
| 498 | + " <tbody>\n", |
| 499 | + " <tr>\n", |
| 500 | + " <th>[Diet Coke]</th>\n", |
| 501 | + " <td>123455</td>\n", |
| 502 | + " <td>159</td>\n", |
| 503 | + " </tr>\n", |
| 504 | + " </tbody>\n", |
| 505 | + "</table>\n", |
| 506 | + "</div>" |
| 507 | + ], |
429 | 508 | "text/plain": [
|
430 |
| - "[Diet Coke] 159\n", |
431 |
| - "[Coke] 143\n", |
432 |
| - "[Sprite] 89\n", |
433 |
| - "[Fresh Tomato Salsa, [Rice, Black Beans, Cheese, Sour Cream, Lettuce]] 49\n", |
434 |
| - "[Fresh Tomato Salsa, [Rice, Black Beans, Cheese, Sour Cream]] 42\n", |
435 |
| - "Name: choice_description, dtype: int64" |
| 509 | + " order_id quantity\n", |
| 510 | + "choice_description \n", |
| 511 | + "[Diet Coke] 123455 159" |
436 | 512 | ]
|
437 | 513 | },
|
438 |
| - "execution_count": 12, |
| 514 | + "execution_count": 23, |
439 | 515 | "metadata": {},
|
440 | 516 | "output_type": "execute_result"
|
441 | 517 | }
|
442 | 518 | ],
|
443 | 519 | "source": [
|
444 |
| - "c = chipo.groupby('choice_description').sum()", |
445 |
| - "c = c.sort_values(['quantity'], ascending=False)", |
446 |
| - "c.head(1)", |
447 |
| - "Diet Coke 159" |
| 520 | + "c = chipo.groupby('choice_description').sum()\n", |
| 521 | + "c = c.sort_values(['quantity'], ascending=False)\n", |
| 522 | + "c.head(1)\n", |
| 523 | + "# Diet Coke 159" |
448 | 524 | ]
|
449 | 525 | },
|
450 | 526 | {
|
|
456 | 532 | },
|
457 | 533 | {
|
458 | 534 | "cell_type": "code",
|
459 |
| - "execution_count": 9, |
| 535 | + "execution_count": 42, |
460 | 536 | "metadata": {
|
461 | 537 | "collapsed": false
|
462 | 538 | },
|
|
467 | 543 | "4972"
|
468 | 544 | ]
|
469 | 545 | },
|
470 |
| - "execution_count": 9, |
| 546 | + "execution_count": 42, |
471 | 547 | "metadata": {},
|
472 | 548 | "output_type": "execute_result"
|
473 | 549 | }
|
|
486 | 562 | },
|
487 | 563 | {
|
488 | 564 | "cell_type": "code",
|
489 |
| - "execution_count": null, |
| 565 | + "execution_count": 43, |
490 | 566 | "metadata": {
|
491 | 567 | "collapsed": true
|
492 | 568 | },
|
|
505 | 581 | },
|
506 | 582 | {
|
507 | 583 | "cell_type": "code",
|
508 |
| - "execution_count": 122, |
| 584 | + "execution_count": 47, |
509 | 585 | "metadata": {
|
510 | 586 | "collapsed": false
|
511 | 587 | },
|
512 | 588 | "outputs": [
|
513 | 589 | {
|
514 |
| - "data": { |
515 |
| - "text/plain": [ |
516 |
| - "34500.16000000046" |
517 |
| - ] |
518 |
| - }, |
519 |
| - "execution_count": 130, |
520 |
| - "metadata": {}, |
521 |
| - "output_type": "execute_result" |
| 590 | + "name": "stdout", |
| 591 | + "output_type": "stream", |
| 592 | + "text": [ |
| 593 | + "Revenue was: $39237.02\n" |
| 594 | + ] |
522 | 595 | }
|
523 | 596 | ],
|
524 | 597 | "source": [
|
525 |
| - "chipo.item_price.sum()" |
| 598 | + "revenue = (chipo['quantity']* chipo['item_price']).sum()\n", |
| 599 | + "\n", |
| 600 | + "print('Revenue was: $' + str(np.round(revenue,2)))" |
526 | 601 | ]
|
527 | 602 | },
|
528 | 603 | {
|
|
619 | 694 | }
|
620 | 695 | ],
|
621 | 696 | "metadata": {
|
| 697 | + "anaconda-cloud": {}, |
622 | 698 | "kernelspec": {
|
623 |
| - "display_name": "Python 2", |
| 699 | + "display_name": "Python [default]", |
624 | 700 | "language": "python",
|
625 | 701 | "name": "python2"
|
626 |
| - }, |
627 |
| - "language_info": { |
628 |
| - "codemirror_mode": { |
629 |
| - "name": "ipython", |
630 |
| - "version": 2 |
631 |
| - }, |
632 |
| - "file_extension": ".py", |
633 |
| - "mimetype": "text/x-python", |
634 |
| - "name": "python", |
635 |
| - "nbconvert_exporter": "python", |
636 |
| - "pygments_lexer": "ipython2", |
637 |
| - "version": "2.7.11" |
638 | 702 | }
|
639 | 703 | },
|
640 | 704 | "nbformat": 4,
|
|
0 commit comments