Skip to content

Commit 4732ab4

Browse files
committed
Chakaralava example and azimpremjifoundation ref
1 parent d046c9e commit 4732ab4

File tree

1 file changed

+32
-14
lines changed

1 file changed

+32
-14
lines changed

src/others/pells_equation.md

Lines changed: 32 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -20,18 +20,19 @@ $x^{2} - d \cdot y^{2} = ( x + \sqrt{d} \cdot y ) ( x - \sqrt{d} \cdot y ) = 1$
2020

2121
The first part $( x + \sqrt{d} \cdot y )$ is always greater than 1. And the second part $( x - \sqrt{d} \cdot y )$ is always less than 1.
2222

23-
We will prove that all solutions to Pell's equation are given by powers of the smallest positive solution. Let's assume it to be $ x_{0} + y_{0} \cdot \sqrt{d}$.
23+
We will prove that all solutions to Pell's equation are given by powers of the smallest positive solution. Let's assume it to be
24+
$ x_{0} + y_{0} \cdot \sqrt{d} $
2425

25-
[//]: # (We claim that every solution to the equation is given by $ (x_{0} + y_{0} \cdot \sqrt{d})^{n}$ for some integer $n$. The idea is that any other solution)
26-
[//]: # ( $( x + \sqrt{d} \cdot y )$ must be of this form, meaning that all solutions are generated by repeated multiplication of the smallest solution. Here we use Brahmagupta's identity of quadratic decomposition.)
27-
[//]: # ( $(a^{2} - n \cdot b^{2}) \cdot (c^{2} - n \cdot d^{2}) = (a \cdot c + n \cdot b \cdot d)^{2} - n \cdot (a \cdot d + b \cdot c)^{2}$)
26+
[//]: # (We claim that every solution to the equation is given by $ (x_{0} + y_{0} \cdot \sqrt{d})^{n} $ for some integer $ n $. The idea is that any other solution)
27+
[//]: # ( $ ( x + \sqrt{d} \cdot y )$ must be of this form, meaning that all solutions are generated by repeated multiplication of the smallest solution. Here we use Brahmagupta's identity of quadratic decomposition.)
28+
[//]: # ( $ (a^{2} - n \cdot b^{2}) \cdot (c^{2} - n \cdot d^{2}) = (a \cdot c + n \cdot b \cdot d)^{2} - n \cdot (a \cdot d + b \cdot c)^{2}$)
2829
[//]: # ( )
2930
[//]: # (Here, $a = x_{1}$, $b = y_{1}$, $c = x_{2}$, $d = y_{2}$)
3031
[//]: # ( So if (x_{1}, y_{1}) and (x_{2}, y_{2}) are solutions, then $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2}, x_{1} \cdot y_{2} + y_{1} \cdot x_{2})$ is also a solution.)
3132
[//]: # (First, we prove that product of two solutions is also a solution.)
3233

33-
We use method of descent to prove it. suppose there is a solution $u + v \cdot \sqrt{d}$ such that $u^{2} - d \cdot v^{2} = 1$
34-
Therefore, $ ( x_{0} + \sqrt{d} \cdot y_{0} )^{n} < u + v \cdot \sqrt{d} < ( x_{0} + \sqrt{d} \cdot y_{0} )^{n+1}$
34+
We use method of descent to prove it. suppose there is a solution $u + v \cdot \sqrt{d}$ such that $u^{2} - d \cdot v^{2} = 1 $
35+
Therefore, $ ( x_{0} + \sqrt{d} \cdot y_{0} )^{n} < u + v \cdot \sqrt{d} < ( x_{0} + \sqrt{d} \cdot y_{0} )^{n+1} $
3536

3637
Multiplying the above inequality by $( x_{0} - \sqrt{d} \cdot y_{0} )^{n}$,(which is > 0 and < 1) we get
3738

@@ -75,19 +76,35 @@ $$\sf=2+\cfrac{1}{1+\cfrac1{1+\cfrac1{1+\cfrac4{\vdots}}}}$$
7576

7677
we get the continued fraction of $\sf$ as $[2; 1, 1, 4, 1, 1, 4, \ldots]$.
7778

79+
It can also be calculated using only [integer based calculation](https://cp-algorithms.com/algebra/continued-fractions.html)
80+
7881
### Finding the solution using Chakravala method
79-
The Chakravala method is an ancient Indian algorithm to solve Pell's equation. It is based on the Brahmagupta's identity of quadratic decomposition.
82+
The Chakravala method is an ancient Indian algorithm to solve Pell's equation. It is based on the Brahmagupta's identity of quadratic decomposition
8083
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2}$
8184
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} - n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} - x_{2} \cdot y_{1})^{2}$
8285

86+
And Bhaskara's Lemma:
87+
If $x^{2} - n \cdot y^{2} = k$, then $ ( \frac{ m \cdot x + n \cdot y }{k})^{2} - n \cdot ( \frac{ x + m \cdot y }{k})^{2} = \frac{m^2 - n}{k}$
88+
8389
Using above Brahmagupta's identity, If $(x_{1}, y_{1}, k_{1})$ and $(x_{2}, y_{2}, k_{2})$ satisfy $(x_{1}^{2} - y_1^{2}) \cdot (x_{2}^{2} - y_2^{2}) = k_{1} \cdot k_{2} $, then $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2}, x_{1} \cdot y_{2} + y_{1} \cdot x_{2}, k_{1} \cdot k_{2})$ is also a solution of $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2} = k_{1} \cdot k_{2}$
8490

85-
[//]: # (First, we choose $y_{1} = 1$ and choose $x_{1} = \lfloor \sqrt n \rfloor$ such that $k_{1}$ is a small integer.)
91+
#### Steps
92+
1. Initialization:Choose an initial solution $(p_{0}, q_{0}, m_{0})$ where $p_{0}$ and $q_{0}$ are co-prime such that $p_{0}^{2} - N \cdot q_{0}^{2} = m_{0}$. Typically, start with $p_{0} = \lfloor \sqrt N \rfloor $, $q_{0} = 1$, $m_{0} = p_0^2 - N $.
93+
2. Key step: Find $x_{1}$ such that: $q_{0} \cdot x_{1} \equiv -p_{0} \pmod {\lvert m_{0}\rvert}$ and $\lvert x_{1}^2 - N \rvert$ is minimized.
94+
Update the triple $(p_{1}, q_{1}, m_{1}) = ( \frac{x_{1} \cdot p_{0} + N \cdot q_{0}}{\lvert m_{0} \rvert}, \frac{p_{0} + x_{1} \cdot q_{0}}{\lvert m_{0} \rvert}, \frac{x_1^{2} - N}{m_{0}})$.
95+
3. Termination: When $m_{k}=1$, the values of $p_{k}$ and $q_{k}$ are the smallest positive solution of the Pell's equation.
96+
97+
##### Example
98+
Let's solve the equation $x^{2} - 13 \cdot y^{2} = 1$ using Chakravala method.
99+
1. Start with $(p_{0}, q_{0}, m_{0}) = (3, 1, -4)$ because $3^2 - 13 \cdot1^2 = -4$.
86100

87-
[//]: # ()
88-
[//]: # (Then, Iteratively we adjust $x_{1}$ and $y_{1}$ so that $k_{1} = 1$. The solution is given by $&#40;x_{1}, y_{1}&#41;$ to original Pell's equation.)
89-
[//]: # ()
90-
[//]: # ( Choosing m. At e)
101+
2. Find $x_{1}$ such that $x_{1} \equiv -3 \pmod {4}$ and $\lvert x_{1}^2 - 13 \rvert$ is minimized.
102+
We get $x_{1} = 1$. Update the triple $(p_{1}, q_{1}, m_{1}) = ( \frac{1 \cdot 3 + 13 \cdot 1}{4}, \frac{3 + 1 \cdot 1}{4}, \frac{1^{2} - 13}{-4}) = (4, 1, 3)$.
103+
3. Substituting $(p_{1}, q_{1}, k_{1}) = (4, 1, 3)$ in key step, we get $x_{2} \equiv -4 \pmod 3$ and minimize $\lvert x_{2}^2 - 13 \rvert$ i.e, $x_{2} = 2$. Update the triple $(p_{2}, q_{2}, m_{2}) = ( \frac{2 \cdot 4 + 13 \cdot 1}{3}, \frac{4 + 2 \cdot 1}{3}, \frac{2^{2} - 13}{-3}) = (7, 2, -3)$.
104+
4. Substituting $(p_{2}, q_{2}, m_{2}) = (7, 2, -3)$ in key step, we get $2 \cdot x_{3} \equiv -7 \pmod 3$ and minimize $\lvert x_{3}^2 - 13 \rvert$ i.e, $x_{3} = 4$. Update the triple $(p_{3}, q_{3}, m_{3}) = ( \frac{4 \cdot 7 + 13 \cdot 2}{3}, \frac{7 + 4 \cdot 2}{3}, \frac{4^{2} - 13}{-3}) = (18, 5, -1)$.
105+
5. Substituting $(p_{3}, q_{3}, m_{3}) = (18, 5, -1)$ in key step, we get $5 \cdot x_{4} \equiv -18 \pmod 1$ and minimize $\lvert x_{4}^2 - 13 \rvert$ i.e, $x_{4} = 4$. Update the triple $(p_{4}, q_{4}, m_{4}) = ( \frac{4 \cdot 18 + 13 \cdot 5}{1}, \frac{18 + 4 \cdot 5}{1}, \frac{4^{2} - 13}{-1}) = (137, 38, -3)$.
106+
6. Substituting $(p_{4}, q_{4}, m_{4}) = (137, 38, -3)$ in key step, we get $ 38 \cdot x_{5} \equiv -137 \pmod 3$ and minimize $\lvert x_{5}^2 - 13 \rvert$ i.e, $x_{5} = 2$. Update the triple $(p_{5}, q_{5}, m_{5}) = ( \frac{2 \cdot 137 + 13 \cdot 38}{3}, \frac{137 + 2 \cdot 38}{3}, \frac{2^{2} - 13}{-3}) = (256, 71, 3)$.
107+
7. Substituting $(p_{5}, q_{5}, m_{5}) = (256, 71, 3)$ in key step, we get $ 71 \cdot x_{6} \equiv -256 \pmod 3$ and minimize $\lvert x_{6}^2 - 13 \rvert$ i.e, $x_{6} = 4$. Update the triple $(p_{6}, q_{6}, m_{6}) = ( \frac{4 \cdot 256 + 13 \cdot 71}{3}, \frac{256 + 4 \cdot 71}{3}, \frac{4^{2} - 13}{3}) = (649, 180, 1)$.
91108

92109
## Implementation
93110
```cpp
@@ -97,8 +114,9 @@ Using above Brahmagupta's identity, If $(x_{1}, y_{1}, k_{1})$ and $(x_{2}, y_{2
97114
## References
98115
- [Pell's equation - Wikipedia](https://en.wikipedia.org/wiki/Pell%27s_equation)
99116
- [Periodic Continued Fractions](https://en.wikipedia.org/wiki/Periodic_continued_fraction)
100-
- [Chakralava Method - Wikipedia](https://en.wikipedia.org/wiki/Chakravala_method)
101-
- [Chakralava Method](https://www.isibang.ac.in/~sury/chakravala.pdf)
117+
- [Chakravala Method - Wikipedia](https://en.wikipedia.org/wiki/Chakravala_method)
118+
- [Chakravala Method](http://publications.azimpremjifoundation.org/1630/1/3_The%20Chakravala%20Method.pdf)
119+
- [Chakravala Method](https://www.isibang.ac.in/~sury/chakravala.pdf)
102120
- [Codeforces Pell's Equation](https://codeforces.com/topic/116937/en20)
103121

104122
## Problems

0 commit comments

Comments
 (0)