Skip to content

Commit b5517a0

Browse files
committed
references and problem from project euler
1 parent a4c3729 commit b5517a0

File tree

1 file changed

+23
-1
lines changed

1 file changed

+23
-1
lines changed

src/others/pells_equation.md

Lines changed: 23 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,9 +76,31 @@ $$\sf=2+\cfrac{1}{1+\cfrac1{1+\cfrac1{1+\cfrac4{\vdots}}}}$$
7676
we get the continued fraction of $\sf$ as $[2; 1, 1, 4, 1, 1, 4, \ldots]$.
7777

7878
### Finding the solution using Chakravala method
79+
The Chakravala method is an ancient Indian algorithm to solve Pell's equation. It is based on the Brahmagupta's identity of quadratic decomposition.
80+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2}$
81+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} - n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} - x_{2} \cdot y_{1})^{2}$
7982

83+
Using above Brahmagupta's identity, If $(x_{1}, y_{1}, k_{1})$ and $(x_{2}, y_{2}, k_{2})$ satisfy $(x_{1}^{2} - y_1^{2}) \cdot (x_{2}^{2} - y_2^{2}) = k_{1} \cdot k_{2} $, then $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2}, x_{1} \cdot y_{2} + y_{1} \cdot x_{2}, k_{1} \cdot k_{2})$ is also a solution of $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2} = k_{1} \cdot k_{2}$
84+
85+
[//]: # (First, we choose $y_{1} = 1$ and choose $x_{1} = \lfloor \sqrt n \rfloor$ such that $k_{1}$ is a small integer.)
86+
87+
[//]: # ()
88+
[//]: # (Then, Iteratively we adjust $x_{1}$ and $y_{1}$ so that $k_{1} = 1$. The solution is given by $(x_{1}, y_{1})$ to original Pell's equation.)
89+
[//]: # ()
90+
[//]: # ( Choosing m. At e)
8091

8192
## Implementation
8293
```cpp
8394

84-
```
95+
```
96+
97+
## References
98+
- [Pell's equation - Wikipedia](https://en.wikipedia.org/wiki/Pell%27s_equation)
99+
- [Periodic Continued Fractions](https://en.wikipedia.org/wiki/Periodic_continued_fraction)
100+
- [Chakralava Method - Wikipedia](https://en.wikipedia.org/wiki/Chakravala_method)
101+
- [Chakralava Method](https://www.isibang.ac.in/~sury/chakravala.pdf)
102+
- [Codeforces Pell's Equation](https://codeforces.com/topic/116937/en20)
103+
104+
## Problems
105+
- [Project Euler 66](https://projecteuler.net/problem=66)
106+
- [Hackerrank ProjectEuler-066](https://www.hackerrank.com/contests/projecteuler/challenges/euler066/problem)

0 commit comments

Comments
 (0)