-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathregions.py
430 lines (299 loc) · 10.8 KB
/
regions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import itertools
from abc import ABC
from dataclasses import dataclass
import random
from inspect import signature
from typing import List, Any, Tuple
from multimethod import multimethod
from scipy.spatial.qhull import HalfspaceIntersection, ConvexHull
import math
import numpy as np
from probRobScene.core.distributions import Samplable
from probRobScene.core.utils import min_and_max
from probRobScene.core.vectors import rotate_euler_v3d, rotation_to_euler, Vector3D, VectorDistribution, reverse_euler
class LazilyEvaluable(ABC):
pass
class Region(Samplable):
pass
class Intersect(ABC):
pass
class Convex(ABC):
pass
class PointInRegionDistribution(VectorDistribution):
"""Uniform distribution over points in a Region"""
def sample_given_dependencies(self, dep_values) -> Any:
return uniform_point_inner(dep_values[self.region])
def support_interval(self):
return None, None
def __init__(self, region):
self.region = region
def __str__(self):
return f'PointIn({self.region})'
@dataclass(frozen=True)
class All(Region):
pass
@dataclass(frozen=True)
class Empty(Region):
pass
@dataclass(frozen=True, eq=False)
class Spherical(Region):
center: Vector3D
radius: float
@property
def circumsphere(self):
return self.center, self.radius
@dataclass(frozen=True, eq=False)
class Intersection(Region):
regions: List[Region]
def __post_init__(self):
assert len(self.regions) > 1
@dataclass(frozen=True, eq=False)
class HalfSpace(Region, Convex):
point: Vector3D
normal: Vector3D
dist: float = 100.0
def __post_init__(self):
assert np.isclose(np.linalg.norm(self.normal), 1.0), f"Normal vector {self.normal} has no-unit magnitude"
@property
def rot(self):
return rotation_to_euler(Vector3D(0, 0, 1), self.normal)
@dataclass(frozen=True, eq=False)
class ConvexPolyhedron(Region, Convex):
hsi: HalfspaceIntersection
@property
def corners(self):
convex_hull = ConvexHull(self.hsi.intersections)
return tuple(convex_hull.points[i] for i in convex_hull.vertices)
@dataclass(frozen=True, eq=False)
class ConvexPolygon3D(Region, Convex):
hsi: HalfspaceIntersection
origin: Vector3D
rot: Vector3D
@property
def rev_rot(self) -> Vector3D:
return reverse_euler(self.rot)
@property
def normal(self) -> Vector3D:
return rotate_euler_v3d(Vector3D(0, 0, 1), self.rot)
@dataclass(frozen=True, eq=False)
class Cuboid(Region, Convex):
position: Vector3D
orientation: Vector3D
width: float
length: float
height: float
@property
def dimensions(self):
return np.array([self.width, self.length, self.height])
@property
def hw(self): return self.width / 2.0
@property
def hl(self): return self.length / 2.0
@property
def hh(self): return self.height / 2.0
@property
def radius(self): return np.linalg.norm((self.hw, self.hl, self.hh))
@property
def corners(self):
return tuple(self.position + rotate_euler_v3d(Vector3D(*offset), self.orientation)
for offset in itertools.product((self.hw, -self.hw), (self.hl, -self.hl), (self.hh, -self.hh)))
@property
def circumcircle(self):
return self.position, self.radius
@dataclass(frozen=True, eq=False)
class Rectangle3D(Region, Convex):
width: float
length: float
origin: Vector3D
rot: Vector3D
@property
def rev_rot(self) -> Vector3D:
return reverse_euler(self.rot)
@property
def normal(self) -> Vector3D:
return rotate_euler_v3d(Vector3D(0, 0, 1), self.rot)
@property
def w_ax(self):
return rotate_euler_v3d(Vector3D(1, 0, 0), self.rot)
@property
def l_ax(self):
return rotate_euler_v3d(Vector3D(0, 1, 0), self.rot)
@dataclass(frozen=True, eq=False)
class Plane(Region):
origin: Vector3D
normal: Vector3D
@dataclass(frozen=True, eq=False)
class Line(Region):
origin: Vector3D
direction: Vector3D
@dataclass(frozen=True, eq=False)
class LineSeg(Region):
start: Vector3D
end: Vector3D
@dataclass(frozen=True, eq=False)
class PointSet(Region):
points: List[Vector3D]
@multimethod
def uniform_point_inner(r: Spherical):
x, y, z = r.center
u = 2.0 * random.random() - 1.0
phi = 2.0 * math.pi * random.random()
r = random.random() ** (1 / 3.)
x_offset = r * np.cos(phi) * (1 - u ** 2) ** 0.5
y_offset = r * np.sin(phi) * (1 - u ** 2) ** 0.5
z_offset = r * u
pt = Vector3D(x + x_offset, y + y_offset, z + z_offset)
return pt
pass
@multimethod
def uniform_point_inner(r: HalfSpace):
untransformed_point = Vector3D(*np.random.uniform(0, r.dist, 3))
return rotate_euler_v3d(untransformed_point, r.rot) + r.point
@multimethod
def uniform_point_inner(r: ConvexPolyhedron):
return Vector3D(*hit_and_run(r.hsi))
@multimethod
def uniform_point_inner(r: ConvexPolygon3D):
random_point_flat = Vector3D(*hit_and_run(r.hsi), 0)
return rotate_euler_v3d(random_point_flat, r.rot) + r.origin
@multimethod
def uniform_point_inner(r: Cuboid):
hw, hl, hh = r.hw, r.hl, r.hh
rx = random.uniform(-hw, hw)
ry = random.uniform(-hl, hl)
rz = random.uniform(-hh, hh)
pt = r.position + rotate_euler_v3d(Vector3D(rx, ry, rz), r.orientation)
return pt
@multimethod
def uniform_point_inner(r: Rectangle3D):
x = random.uniform(-r.width / 2.0, r.width / 2.0)
y = random.uniform(-r.length / 2.0, r.length / 2.0)
flat_point = Vector3D(x, y, 0)
return rotate_euler_v3d(flat_point, r.rot) + r.origin
@multimethod
def uniform_point_inner(r: Plane):
# We don't want arbitrarily chosen axis to be exactly aligned with normal
if 1.0 - np.abs(r.normal, Vector3D(1.0, 0.0, 0.0)) >= 1e-5:
u = np.cross(r.normal, Vector3D(1.0, 0.0, 0.0))
else:
u = np.cross(r.normal, Vector3D(0.0, 1.0, 0.0))
v = np.cross(r.normal, u)
a = np.random.uniform(-r.dist / 2.0, r.dist / 2.0)
b = np.random.uniform(-r.dist / 2.0, r.dist / 2.0)
offset = a * u + b * v
return r.origin + offset
@multimethod
def uniform_point_inner(r: Line):
t = np.random.uniform(-r.dist / 2.0, r.dist / 2.0)
return r.origin + t * r.direction
@multimethod
def uniform_point_inner(r: LineSeg):
t = random.uniform(0.0, 1.0)
return (1.0 - t) * r.start + t * r.end
@multimethod
def uniform_point_inner(r: PointSet):
return Vector3D(*random.choice(r.points))
@multimethod
def contains(r: Region, o: Any) -> bool:
contains_points = [contains_point(r,c) for c in o.corners]
return all(contains_points)
@multimethod
def contains(r: Region, v: Vector3D) -> bool:
return contains_point(r, v)
@multimethod
def contains_point(r: All, point: Vector3D) -> bool:
return True
@multimethod
def contains_point(r: Empty, point: Vector3D) -> bool:
return False
@multimethod
def contains_point(r: Spherical, point: Vector3D) -> bool:
return point.distanceTo(r.center) <= r.radius
@multimethod
def contains_point(r: HalfSpace, point: Vector3D) -> bool:
offset = point - r.point
dp = np.dot(r.normal, offset)
return dp >= 0
@multimethod
def contains_point(r: ConvexPolyhedron, point: Vector3D) -> bool:
for hs_ineq in r.hsi.halfspaces:
if np.dot(point, hs_ineq[:-1]) + hs_ineq[-1] > 0:
return False
return True
@multimethod
def contains_point(r: ConvexPolygon3D, point: Vector3D) -> bool:
flat_point = rotate_euler_v3d(point - r.origin, r.rev_rot)
if np.abs(flat_point[-1]) > 1e-8:
return False
for hs_ineq in r.hsi.halfspaces:
if np.dot(flat_point[:-1], hs_ineq[:-1]) + hs_ineq[-1] > 0:
return False
return True
@multimethod
def contains_point(r: Cuboid, point: Vector3D) -> bool:
diff = point - r.position
x, y, z = rotate_euler_v3d(diff, reverse_euler(r.orientation))
return abs(x) <= r.hw and abs(y) <= r.hl and abs(z) <= r.hh
@multimethod
def contains_point(r: Plane, point: Vector3D) -> bool:
return np.abs(np.dot(r.normal - r.origin, point - r.origin)) <= 1e-8
@multimethod
def contains_point(r: Rectangle3D, point: Vector3D) -> bool:
flat_point = rotate_euler_v3d(point - r.origin, r.rev_rot)
return (np.abs(flat_point.x) <= r.width / 2.0 and
np.abs(flat_point.y) <= r.length / 2.0 and
np.abs(flat_point.z) <= 1e-8) # "Roughly equals" zero
@multimethod
def contains_point(r: Line, point: Vector3D) -> bool:
pv = point - r.origin
pv = pv / np.linalg.norm(pv)
dp_unsigned = np.abs(np.dot(pv, r.direction))
# Looking for dot product to be +-1.0 (with wiggle room)
return 1.0 - dp_unsigned <= 1e-8
@multimethod
def contains_point(r: LineSeg, point: Vector3D) -> bool:
s_e_dir = r.end - r.start / np.linalg.norm(r.end - r.start)
s_p_dir = point - r.start / np.linalg.norm(point - r.start)
p_e_dir = r.end - point / np.linalg.norm(r.end - point)
dp1 = np.dot(s_e_dir, s_p_dir)
dp2 = np.dot(s_e_dir, p_e_dir)
return np.abs(dp1 - 1.0) <= 1e-8 and np.abs(dp2 - 1.0) <= 1e-8 # A little bit of wiggle room to be a small epsilon of rounding off of the line
@multimethod
def contains_point(r: PointSet, point: Vector3D) -> bool:
distance, location = r.kd_tree.query(point)
return distance <= r.tolerance
@multimethod
def AABB(r: Spherical) -> Tuple[np.ndarray, np.ndarray]:
x, y, z = r.center
return np.array((x, y, z)) - r.radius, np.array((x, y, z)) + r.radius
@multimethod
def AABB(r: ConvexPolyhedron) -> Tuple[np.ndarray, np.ndarray]:
cs = np.array(r.corners)
return np.min(cs, axis=0), np.max(cs, axis=0)
@multimethod
def AABB(r: Cuboid) -> Tuple[np.ndarray, np.ndarray]:
xs, ys, zs = zip(*r.corners)
min_x, max_x = min_and_max(xs)
min_y, max_y = min_and_max(ys)
min_z, max_z = min_and_max(zs)
return (np.array((min_x, min_y, min_z))), (np.array((max_x, max_y, max_z)))
def hit_and_run(hsi: HalfspaceIntersection, num_steps: int = 10) -> np.array:
current_point = hsi.interior_point
for i in range(num_steps):
random_direction = np.random.normal(size=len(current_point))
random_direction = random_direction / np.linalg.norm(random_direction)
ts = []
for hs_ineq in hsi.halfspaces:
hs_norm = -hs_ineq[:-1]
point_coherence = np.dot(current_point, hs_norm) - hs_ineq[-1]
direction_coherence = np.dot(random_direction, hs_norm)
if np.abs(direction_coherence) > 1e-9:
ts.append(-point_coherence / direction_coherence)
ts = np.array(ts)
assert len(ts) > 0
if len(ts[ts > 0]) == 0 or len(ts[ts < 0]) == 0:
raise Exception
max_t = np.min(ts[ts > 0])
min_t = np.max(ts[ts < 0])
current_point = current_point + np.random.uniform(min_t, max_t) * random_direction
return current_point