@@ -60,7 +60,8 @@ def cross_validate(estimator, X, y=None, groups=None, scoring=None, cv='warn',
60
60
61
61
groups : array-like, with shape (n_samples,), optional
62
62
Group labels for the samples used while splitting the dataset into
63
- train/test set.
63
+ train/test set. Only used in conjunction with a "Group" `cv` instance
64
+ (e.g., `GroupKFold`).
64
65
65
66
scoring : string, callable, list/tuple, dict or None, default: None
66
67
A single string (see :ref:`scoring_parameter`) or a callable
@@ -294,7 +295,8 @@ def cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv='warn',
294
295
295
296
groups : array-like, with shape (n_samples,), optional
296
297
Group labels for the samples used while splitting the dataset into
297
- train/test set.
298
+ train/test set. Only used in conjunction with a "Group" `cv` instance
299
+ (e.g., `GroupKFold`).
298
300
299
301
scoring : string, callable or None, optional, default: None
300
302
A string (see model evaluation documentation) or
@@ -674,7 +676,8 @@ def cross_val_predict(estimator, X, y=None, groups=None, cv='warn',
674
676
675
677
groups : array-like, with shape (n_samples,), optional
676
678
Group labels for the samples used while splitting the dataset into
677
- train/test set.
679
+ train/test set. Only used in conjunction with a "Group" `cv` instance
680
+ (e.g., `GroupKFold`).
678
681
679
682
cv : int, cross-validation generator or an iterable, optional
680
683
Determines the cross-validation splitting strategy.
@@ -1107,7 +1110,8 @@ def learning_curve(estimator, X, y, groups=None,
1107
1110
1108
1111
groups : array-like, with shape (n_samples,), optional
1109
1112
Group labels for the samples used while splitting the dataset into
1110
- train/test set.
1113
+ train/test set. Only used in conjunction with a "Group" `cv` instance
1114
+ (e.g., `GroupKFold`).
1111
1115
1112
1116
train_sizes : array-like, shape (n_ticks,), dtype float or int
1113
1117
Relative or absolute numbers of training examples that will be used to
@@ -1368,7 +1372,8 @@ def validation_curve(estimator, X, y, param_name, param_range, groups=None,
1368
1372
1369
1373
groups : array-like, with shape (n_samples,), optional
1370
1374
Group labels for the samples used while splitting the dataset into
1371
- train/test set.
1375
+ train/test set. Only used in conjunction with a "Group" `cv` instance
1376
+ (e.g., `GroupKFold`).
1372
1377
1373
1378
cv : int, cross-validation generator or an iterable, optional
1374
1379
Determines the cross-validation splitting strategy.
0 commit comments