|
| 1 | +# encoding=utf8 |
| 2 | + |
| 3 | +import math |
| 4 | +import pandas as pd |
| 5 | +import numpy as np |
| 6 | +import random |
| 7 | +import time |
| 8 | + |
| 9 | +from sklearn.model_selection import train_test_split |
| 10 | +from sklearn.metrics import accuracy_score |
| 11 | + |
| 12 | + |
| 13 | +class Softmax(object): |
| 14 | + |
| 15 | + def __init__(self): |
| 16 | + self.learning_step = 0.000001 # 学习速率 |
| 17 | + self.max_iteration = 100000 # 最大迭代次数 |
| 18 | + self.weight_lambda = 0.01 # 衰退权重 |
| 19 | + |
| 20 | + def cal_e(self,x,l): |
| 21 | + ''' |
| 22 | + 计算博客中的公式3 |
| 23 | + ''' |
| 24 | + |
| 25 | + theta_l = self.w[l] |
| 26 | + product = np.dot(theta_l,x) |
| 27 | + |
| 28 | + return math.exp(product) |
| 29 | + |
| 30 | + def cal_probability(self,x,j): |
| 31 | + ''' |
| 32 | + 计算博客中的公式2 |
| 33 | + ''' |
| 34 | + |
| 35 | + molecule = self.cal_e(x,j) |
| 36 | + denominator = sum([self.cal_e(x,i) for i in range(self.k)]) |
| 37 | + |
| 38 | + return molecule/denominator |
| 39 | + |
| 40 | + |
| 41 | + def cal_partial_derivative(self,x,y,j): |
| 42 | + ''' |
| 43 | + 计算博客中的公式1 |
| 44 | + ''' |
| 45 | + |
| 46 | + first = int(y==j) # 计算示性函数 |
| 47 | + second = self.cal_probability(x,j) # 计算后面那个概率 |
| 48 | + |
| 49 | + return -x*(first-second) + self.weight_lambda*self.w[j] |
| 50 | + |
| 51 | + def predict_(self, x): |
| 52 | + result = np.dot(self.w,x) |
| 53 | + row, column = result.shape |
| 54 | + |
| 55 | + # 找最大值所在的列 |
| 56 | + _positon = np.argmax(result) |
| 57 | + m, n = divmod(_positon, column) |
| 58 | + |
| 59 | + return m |
| 60 | + |
| 61 | + def train(self, features, labels): |
| 62 | + self.k = len(set(labels)) |
| 63 | + |
| 64 | + self.w = np.zeros((self.k,len(features[0])+1)) |
| 65 | + time = 0 |
| 66 | + |
| 67 | + while time < self.max_iteration: |
| 68 | + print('loop %d' % time) |
| 69 | + time += 1 |
| 70 | + index = random.randint(0, len(labels) - 1) |
| 71 | + |
| 72 | + x = features[index] |
| 73 | + y = labels[index] |
| 74 | + |
| 75 | + x = list(x) |
| 76 | + x.append(1.0) |
| 77 | + x = np.array(x) |
| 78 | + |
| 79 | + derivatives = [self.cal_partial_derivative(x,y,j) for j in range(self.k)] |
| 80 | + |
| 81 | + for j in range(self.k): |
| 82 | + self.w[j] -= self.learning_step * derivatives[j] |
| 83 | + |
| 84 | + def predict(self,features): |
| 85 | + labels = [] |
| 86 | + for feature in features: |
| 87 | + x = list(feature) |
| 88 | + x.append(1) |
| 89 | + |
| 90 | + x = np.matrix(x) |
| 91 | + x = np.transpose(x) |
| 92 | + |
| 93 | + labels.append(self.predict_(x)) |
| 94 | + return labels |
| 95 | + |
| 96 | + |
| 97 | +if __name__ == '__main__': |
| 98 | + |
| 99 | + print('Start read data') |
| 100 | + |
| 101 | + time_1 = time.time() |
| 102 | + |
| 103 | + raw_data = pd.read_csv('../data/train.csv', header=0) |
| 104 | + data = raw_data.values |
| 105 | + |
| 106 | + imgs = data[0::, 1::] |
| 107 | + labels = data[::, 0] |
| 108 | + |
| 109 | + # 选取 2/3 数据作为训练集, 1/3 数据作为测试集 |
| 110 | + train_features, test_features, train_labels, test_labels = train_test_split( |
| 111 | + imgs, labels, test_size=0.33, random_state=23323) |
| 112 | + # print train_features.shape |
| 113 | + # print train_features.shape |
| 114 | + |
| 115 | + time_2 = time.time() |
| 116 | + print('read data cost '+ str(time_2 - time_1)+' second') |
| 117 | + |
| 118 | + print('Start training') |
| 119 | + p = Softmax() |
| 120 | + p.train(train_features, train_labels) |
| 121 | + |
| 122 | + time_3 = time.time() |
| 123 | + print('training cost '+ str(time_3 - time_2)+' second') |
| 124 | + |
| 125 | + print('Start predicting') |
| 126 | + test_predict = p.predict(test_features) |
| 127 | + time_4 = time.time() |
| 128 | + print('predicting cost ' + str(time_4 - time_3) +' second') |
| 129 | + |
| 130 | + score = accuracy_score(test_labels, test_predict) |
| 131 | + print("The accruacy socre is " + str(score)) |
0 commit comments