
TFOCS user guide
Version 1.3 release 2

Stephen Becker∗ Emmanuel Candès† Michael Grant‡

October 16, 2014

Contents

1 Introduction 2
1.1 Example library . 4

2 Software details 4
2.1 Installation . 4
2.2 File overview . 4
2.3 Calling sequences . 5

2.3.1 The initial point . 5
2.3.2 The options structure . 5
2.3.3 The SCD solver . 6

2.4 Customizing the solver . 6
2.4.1 Selecting the algorithm . 6
2.4.2 Improving strong convexity performance . 7
2.4.3 Line search control . 8
2.4.4 Stopping criteria . 8
2.4.5 Data collection and printing . 9
2.4.6 Operation counts . 10

3 Constructing models 10
3.1 Functions: smooth and nonsmooth . 11

3.1.1 Generators . 11
3.1.2 Building your own . 14

3.2 Linear operators . 15
3.2.1 Generators . 16
3.2.2 Building your own . 17

4 Advanced usage 17
4.1 Matrix variables . 17
4.2 Complex variables and operators . 18
4.3 Block structure . 18
4.4 Block structure and SCD models . 20
4.5 Scaling issues . 20
4.6 Continuation . 21

∗IBM Research, Yorktown Heights, NY 10598
†Departments of Mathematics and Statistics, Stanford University, Stanford, CA 94305
‡CVX Research, Inc., Austin, TX 78703

1

4.7 Custom vector spaces . 21
4.8 Standard form linear and semidefinite programming . 21

5 Feedback and support 22

6 Acknowledgments 22

7 Appendix: dual functions 22

8 Appendix: proximity function identities 24

9 Appendix: list of TFOCS functions 24

1 Introduction

TFOCS (pronounced tee-fox) is a library designed to facilitate the construction of first-order methods for
a variety of convex optimization problems. Its development was motivated by its authors’ interest in com-
pressed sensing, sparse recovery, and low rank matrix completion, see the companion paper [1], but the
software is applicable to a wider variety of models than those discussed in the paper. Before we begin, we
would advise the reader to check [1] as many of the underlying mathematical concepts are introduced therein.

The core TFOCS routine tfocs.m supports a particular standard form: the problem

minimize φ(x) , f(A(x) + b) + h(x) (1)

where f and h are convex, A is a linear operator, and b is a vector. The input variable x is a real or complex
vector, matrix, or element from a composite vector space. The function f must be smooth: its gradient
∇f(x) must be inexpensive to compute at any point in its domain. The function h, on the other hand, must
be what we shall henceforth call prox-capable: it must be inexpensive to compute its proximity operator

Φh(x, t) = argmin
z

h(z) + 1
2 t
−1〈z − x, z − x〉 (2)

for any fixed x and t > 0. In [1], we refer to this calculation as a generalized projection, because it reduces to
a projection when h is an indicator function. A variety of useful convex functions are prox-capable, including
norms and indicator functions for many common convex sets. Convex constraints are handled by including
in h an appropriate indicator function; unconstrained smooth problems by choosing h(x) ≡ 0; and concave
maximizations by minimizing the negative of the objective.

Let us briefly discuss the explicit inclusion of an affine form A(x)+ b into (1). Numerically speaking, it is
redundant: the linear operator can instead be incorporated into the smooth function. However, it turns out
that with careful accounting, one can reduce the number of times that A or its adjoint A∗ are called during
the evolution of a typical first-order algorithm. These savings can be significant when the linear operator is
the most expensive part of the objective function, as with many compressed sensing models. Therefore, we
encourage users to employ a separate affine form whenever possible, though it is indeed optional.

As a simple example, consider the LASSO problem as specified by Tibshirani:

minimize 1
2‖Ax− b‖

2
2

subject to ‖x‖1 ≤ τ,
(3)

where A ∈ Rm×n, b ∈ Rm, and τ > 0 are given; A can be supplied as a matrix or a function handle
implementing the linear operator (see §3.2). One can rewrite this as

minimize 1
2‖Ax− b‖

2
2 + h(x),

where h(x) = 0 if ‖x‖1 ≤ τ and +∞ otherwise. Because the TFOCS library includes implementations of
simple quadratics and `1 norm balls, this model can be translated to a single line of code:

2

x = tfocs(smooth_quad, { A, -b }, proj_l1(tau));

Of course, there other ways to solve this problem, and some further customization is necessary to obtain the
best performance. The library provides a file solver_LASSO.m that implements this model, and includes
some of these improvements.

A second TFOCS routine tfocs_SCD.m includes support for a different standard form, motivated by the
smoothed conic dual (SCD) model studied in [1]:

minimize f̄(x) + 1
2µ‖x− x0‖

2
2 + h(A(x) + b). (4)

In this case, neither f̄ nor h must be smooth, but both must be prox-capable. When h is the indicator
function for a convex cone K, (4) is equivalent to

minimize f̄(x) + 1
2µ‖x− x0‖

2
2

subject to A(x) + b ∈ K, (5)

which is the SCD model discussed in [1]. For convenience, then, we refer to (4) as the SCD model, even
though it is actually a bit more general. The SCD model is equivalent to

minimize f̄(x) + 1
2µ‖x− x0‖

2
2 + h(y)

subject to A(x) + b = y,

which TFOCS expresses in saddle-point form

maximize infx,y f̄(x) + 1
2µ‖x− x0‖

2
2 + h(y) + 〈A(x) + b− y, z〉.

This simplifies to something useful, namely,

maximize infx f̄(x) + 1
2µ‖x− x0‖

2
2 + 〈A(x) + b, z〉 − h−(−z), (6)

where h− is the convex conjugate of h composed1 with the function x 7→ −x; that is, h−(x) = h∗(−x) where
h∗ is the convex conjugate of h defined as

h∗(z) , supy〈z, y〉 − h(y). (7)

This model can be expressed as a maximization over z in our primary standard form (1). Therefore, given
specifications for f̄ and h∗, TFOCS can use the standard first-order machinery to solve it. For instance,
consider the smoothed Basis Pursuit Denoising (BPDN) model

minimize ‖x‖1 + 1
2µ‖x‖

2
2

subject to ‖Ax− b‖2 ≤ δ
(8)

with A, b, µ > 0, and δ > 0 given. The function h here is the indicator function for the norm ball of size δ;
its conjugate is h∗(z) = δ‖z‖2 (see the Appendix). The resulting TFOCS code is

x = tfocs_SCD(prox_l1, { A, -b }, prox_l2(delta), mu);

This model is considered in more detail in the file solver_sBPDN.m. We have provided code for other
common sparse recovery models as well. When using the SCD form of the solver, it is often important to
use continuation; see §4.6.

TFOCS includes a library of common functions and linear operators, so many useful models can be
constructed without writing code. Users are free to implement their own functions as well. For a function

1 It may seem silly to write h−(−z) instead of just h∗(z), but we do so because the TFOCS software actually expects h−

instead of h∗. The reason for this convention is that when h = ιK is the indicator function of a convex cone K, then h− = ιK∗
where K∗ is the dual cone, whereas the conjugate is h∗ = ιK◦ where K◦ = −K∗ is the polar cone. Thus for cones that are
self-dual, using the h− formulation is more natural.

3

f , TFOCS requires the ability to compute its value, as well as its gradient, proximity minimization (2), or
both, depending upon how it is to be used. For a linear operator A, TFOCS requires the ability to query the
size of its input and output spaces, and to apply the forward or adjoint operation. The precise conventions
for each of these constructs is provided in §3 below. If you wish to construct a prox-capable function, we
also refer you to the appendix of [3] for a list of proximity operators and their calculus.

The design of TFOCS attempts to strike a balance between two competing interests. On one hand,
we seek to present the algorithms themselves in a clean, readable style, so that it is easy to understand
the mathematical steps that are taken and the differences between the variants. On the other, we wish to
provide a flexible system with configurability, full progress tracking, data collection, and so forth—all of
which introduce considerable implementation complexity. To achieve this balance, we have moved as much
of the complexity to scripts, objects, and functions that are not intended for consumption by the end user.
Of course, in the spirit of open source, you are free to view and modify the internals yourself; but the
documentation described here focuses on the interface presented to the user.

1.1 Example library

This document does not currently provide complete examples of TFOCS-based applications. However, we
are accumulating a number of examples within the software distribution itself. For instance, a variety of
drivers have been created to solve specific models; these have been given the prefix solver_ and are found
in the main TFOCS directory.

In addition, we invite the reader to peruse the examples/ directory. Feel free to use one of the examples
there as a template for your project. The subdirectory paper/ provides code that you can use to reproduce
the results printed in [1]. We will be adding to and updating the examples as we can.

2 Software details

2.1 Installation

The TFOCS package is organized in a relatively flat directory structure. In order to use TFOCS, simply
unpack the compressed archive wherever you would prefer. Then add the base directory to your MATLAB
path; for example,

addpath /home/mcg/matlab/TFOCS/

Do not add the private/ directory or any directories beginning with @ to your path; MATLAB will find those
directories automatically under appropriate circumstances. You can also add the directory via pathtool,
which will give you the option to save the path so that you never have to do this again.

2.2 File overview

The different types of files found in the TFOCS/ directory are distinguished by their prefix. A more complex
description of each function is provided in their on-line help; a later version of this user guide will provide
detailed descriptions of each in an appendix.

• tfocs_: The core solvers implementing optimal first-order methods for the primary standard form (1)
(tfocs.m and others), and the SCD model (4) (tfocs_SCD.m).

• solver_: Solvers for specific standard forms such as the smoothed Dantzig selector and the LASSO.
Besides providing ready-to-use solvers for specific models, these provide good templates to copy for
constructing new solvers.

• smooth_, prox_, proj_, tfunc_: functions to construct and manipulate various smooth and nonsmooth
functions.

• linop_: functions to construct and manipulate linear operators.

4

2.3 Calling sequences

The primary solver tfocs.m accepts the following input sequence:

[x, out] = tfocs(smoothF, affineF, nonsmoothF, x0, opts);

The inputs are as follows:

• smoothF: a smooth function (§3.1).

• affineF: an affine form specification. To represent an affine form A(x) + b, this should be a cell array
{ linearF, b }, where linearF is the implementation of A (§3.2). However, if b = 0, then supplying
linearF alone will suffice.

• nonsmoothF: a nonsmooth function (§3.1).

• x0: the starting point for the algorithm.

• opts: a structure of configuration options.

The smooth function is required, but all other inputs are optional, and may be omitted or replaced with an
empty array [] or cell array {}.

2.3.1 The initial point

If x0 is not supplied, TFOCS will attempt to deduce its proper size from the other inputs (in particular the
linear operator). If successful, it will initialize x0 with the zero vector of that size. But whether or not x0 is
supplied, TFOCS must verify its feasibility as follows:

1. If h(x0) = +∞, the point must be projected into domh. So a single projection with step size 1 is
performed, and x0 is replaced with this value.

2. The value and gradient of f(A(x0)) are computed. Its value must be finite or, the algorithm cannot
proceed; TFOCS has no way to query for a point in dom f(A(·)).

Therefore, for best results, it is best to supply an explicit value of x0 that is known to lie within the domain
of the objective function.

2.3.2 The options structure

The opts structure provides several options for customizing the behavior of TFOCS. To obtain a copy of
the default option structure for a particular solver, call that solver with no arguments:

opts = tfocs;

opts = tfocs_SCD;

To obtain descriptions of the options, call that solver with no inputs nor outputs:

tfocs;

tfocs_SCD;

We will discuss the various entries of the opts structure throughout the remainder of §2. For now, we
highlight one: opts.maxmin. By default, maxmin = 1 and TFOCS performs a minimization; setting it to
maxmin = -1 causes TFOCS to perform a concave maximization. In that case, the smooth function smoothF

must be concave; the nonsmooth function nonsmoothF remains convex. Thus the objective function being
maximized is f(A(x) + b)− h(x).

5

2.3.3 The SCD solver

The calling sequence for the SCD solver is as follows:

[x, out] = tfocs_SCD(objectiveF, affineF, conjnegF, mu, x0, z0, opts, continuationOptions);

The inputs are as follows:

• objectiveF: a function g; or, more precisely, any function that supports the proximity minimization
(2).

• affineF: an affine form specification.

• conjnegF: the conjugate-negative h− of the second nonsmooth function h.

• mu: the scaling for the quadratic term 1
2µ‖x− x0‖2. Must be positive.

• x0 (optional): the center-point for the quadratic term; defaults to 0.

• z0 (optional): the initial dual point.

• opts (optional): a structure of configuration options. The most important option is opts.continuation
which can be either true or false (default). If this is true, it turns on the “continuation” procedure
described in [1], and solves a series of smoothed problem, each time using a better guess for x0 and thus
reducing the effect of the smoothing. Another useful option is opts.debug, which is recommended if
the function returns an error and complains about sizes of operators. In the debug mode, the setup
script prints out the sizes of the various operators.

• continuationOpts (optional): a structure of options to control how continuation is performed. If this
option is included, then continuation is performed unless opts.continuation = false is explicitly
set. To see possible values for continuationOpts, run continuationOpts=continuation;, and type
help continuation for details. The file examples\smallscale\test_sBPDN_withContinuation.m

provides example usage.

In this case, affineF, conjnegF, and mu are required. If objectiveF is empty, it is assumed that g(x) ≡ 0.
Because TFOCS solves the dual of the SCD model, it is in fact the dual point z0 that the underlying

algorithm uses to initialize itself. Therefore, z0 must be verified in the manner that x0 is above. However,
the all-zero value of z0 is always acceptable: in the worst case, TFOCS will have to project away from zero
to begin, but that result will always be feasible.

Note also that conjnegF is not exactly the conjugate h∗(z) but rather it is h−(z) = h∗(−z). Thus if h(z)
is the indicator function of the positive orthant (which is a self-dual cone), then h− = h and can be called in
TFOCS as proj_Rn. It is also often the case that h− = h∗, such as when h or h∗ is the indicator function of
a norm or of any function that is positive homogeneous of degree 1. For functions such proj_box(l,u) or
prox_hinge(q,r,y), it is possible to get h− via the dual by scaling the dual, as in prox_boxDual(l,u,-1)

and prox_hingeDual(q,r,-y) respectively.

2.4 Customizing the solver

2.4.1 Selecting the algorithm

TFOCS implements six different first-order methods, each represented by a 2/3-letter acronym:

• AT: Auslender and Teboulle’s single-projection method.

• GRA: A standard, un-accelerated proximal gradient method.

• LLM: Lan, Lu, and Monteiro’s dual-projection method.

• N07: Nesterov’s dual-projection 2007 method.

6

• N83: Nesterov’s single-projection 1983 method.

• TS: Tseng’s single-projection modification of Nesterov’s 2007 method.

To select one of these algorithms explicitly, provide the corresponding acronym in the opts.alg parameter.
For instance, to select the Lan, Lu, & Monteiro method, use

opts.alg = ’LLM’;

when calling tfocs.m or tfocs_SCD.m. The current default algorithm is AT, although this is subject to
change as we do further research. Therefore, once you are satisfied with the performance of your model, you
may wish to explicitly specify opts.alg = ’AT’ to protect yourself against unexpected changes.

A full discussion of these variants, and their practical differences, is given in §5.2 of [1]. Here are some
of the highlights:

• For most problems, the standard proximal gradient method GRA will perform significantly worse than
a properly tuned optimal method. We provide it primarily for comparison.

• One apparent exception to this rule is when a model is strongly convex. In that case, GRA will achieve
linear performance, and the others will not. However, this disadvantage can be eliminated with judi-
cious use of the opts.restart parameter; see §2.4.2 for information.

• The iterates generated by Nesterov’s 1983 method N83 sometimes fall outside of the domain of the
objective function. If the smooth function is finite everywhere, this is not an issue. But if it is not,
one of the other methods should be considered.

• In most cases, the extra projections made by LLM and N07 do not significantly improve performance
as measured by the number of linear operations or projections required to achieve a certain tolerance.
Therefore, when the projection cost is significant (for example, for matrix completion problems), single-
projection methods are preferred.

Outside of the specific cases discussed above, all of the optimal methods (that is, except GRA) achieve similar
performance on average. However, we have observed that in some cases, one specific method will stand
out over others. Therefore, for a new application, it is worthwhile to experiment with the different variants
and/or solver parameters to find the best possible combination.

You may notice that the TFOCS distribution includes a number of files of the form tfocs_AT.m,
tfocs_GRA.m, and so forth. These are the actual implementations of the specific algorithms. The tfocs.m

driver calls one of these functions according to the value of the opts.alg option, and they have the same
calling sequence as tfocs.m itself. Feel free to examine these files; we have endeavored to make them clean
and readable.

2.4.2 Improving strong convexity performance

As mentioned above, so-called optimal first-order methods tend to suffer in performance compared to a
standard gradient method when the objective function is strongly convex. This is an inevitable consequence
of the way optimal first-order methods are constructed.

Using the restart option, it is possible to overcome this limitation. This option has a simple effect:
it resets the optimal first-order method every restart iterations. It turns out that by doing this, the
acceleration parameter θk remains within a range that preserves linear convergence for strongly convex
problems.2 Supplying a negative value of restart imposes a “no regress” condition: it resets θk either after
abs(restart) iterations, or if the objective function fails to decrease, whichever comes first.

The disadvantage of restart is that the optimal choice for opts.restart can almost never be determined
in advance. A bit of trial and error testing is required to determine the best value. However, if you are willing

2See Section 5 in [1] for a proper introduction to the role played by the parameter sequence {θk}.

7

to invest this effort, many models can achieve significant speedups. In fact, experimenting with restart is
beneficial for many models that are not strongly convex.

Examples of the effect of restart on algorithm performance are given in §5.6 and §6.1 of [1]. You can
examine and reproduce those experiments using the code found in the subdirectories

TFOCS/examples/strong_convexity

TFOCS/examples/compare_solvers

of the TFOCS distribution. Some of the model-specific scripts, such as solver_LASSO.m, already include a
default value of the restart parameter; but even when using those codes, further experimentation may be
worthwhile.

In a future version of TFOCS, we hope to provide a more automatic way to adaptively detect and exploit
local strong convexity.

2.4.3 Line search control

TFOCS implements a slight variation of the backtracking line search methods presented in [1]. The following
parameters in the opts structure can be used to control it:

L0: The initial Lipschitz estimate. The default is 1, or Lexact (see below) if it is provided. L=1 is typically a
severe underestimate, but the backtracking line search generally corrects for this after the first backtracking
step.

beta: The step size reduction that should occur if the Lipschitz bound is violated. If beta>=1, TFOCS
employs a fixed step size t=1/L. The default is beta=0.5; that is, the step size is halved when a violation
occurs.

alpha: The step size will be increased by 1/alpha at each iteration. This allows the step size to adapt to
changes in local curvature. The default value is alpha=0.9.

Lexact: The exact Lipschitz estimate. If supplied, it will do two things: first, it will prevent the step size
from growing beyond t=1/Lexact. Second, if the backtracking search tries to grow it beyond this level, it
will issue a warning. This is useful if you believe you know what the global Lipschitz constant is, and would
like to verify either your calculations or your code.

2.4.4 Stopping criteria

There are a variety of ways to decide when the algorithm should terminate:

tol: TFOCS terminates when the iterates satisfy ‖xk+1 − xk‖/max{1, ‖xk+1‖} ≤ tol. The default value is
10−8; if set to zero or a negative value, this criterion will never be engaged.

maxIts: The maximum number of iterations the algorithm should take; defaults to Inf.

maxCounts: This option causes termination after a certain number of function calls or linear operations are
made; see §2.4.6 for details. It defaults to Inf.

stopCrit: Choose from one of several stopping criteria. By default, stopCrit is 1, which is our recommended
stopping criteria when not using the SCD model. Setting this to 3 will use a stopping criteria applied to the
dual value (so this is only available in SCD models, where the dual is really the primal), and setting this
to 4 is similar but uses a relative error tolerance. A value of 4 is recommended when using the SCD model
with continuation. For details, see the code in private/tfocs_iterate.m.

stopFcn: This option allows you to supply one or more stopping criteria of your own design. To use it, set
stopFcn must be a function handle or a cell array of function handles. For tfocs.m, these function handles
will be called as follows:

stop = stopFcn(f, x);

8

where f is the function value and x is the current point.

stop = stopFcn(f, z, x);

where f is the current dual function value, z is the current dual point, and x is the current primal point.
The output should either be true or false; if true, the algorithm will stop.

Note that the standard stopping criteria still apply, so the algorithm will halt when any of the stopping
criteria are reached. To ignore the standard stopping criteria, set stopCrit to ∞.

2.4.5 Data collection and printing

The printEvery option tells TFOCS to provide a printed update of its progress once every printEvery

iterations. Its default value is 100. To suppress all output, set printEvery to zero. By default, the printing
occurs on the standard output; to redirect it to another file, set the fid option to the FID of the file (the
FID is the output of MATLAB’s fopen command).

The second output out of tfocs.m and tfocs_SCD.m (as well as the algorithm-specific functions tfocs_AT.m,
etc.) is a structure containing additional information about the execution of the algorithm. The fields con-
tained in this structure include:

alg: the 2-3 letter acronym of the algorithm used.

algorithm: the long name of the algorithm.

status: a string describing the reason the algorithm terminated.

dual: the value of the dual variable, for saddle-point problems.

Furthermore, if opts.saveHist = true, several additional fields will be included containing a per-iteration
history of the following values:

f: the objective value.

theta: the acceleration parameter θ.

stepsize: the step size; i.e., the reciprocal of the local Lipschitz estimate.

norm_x: the Euclidean norm of the current iterate ‖xk‖.
norm_dx: the Euclidean norm of the difference ‖xk − xk−1‖.
counts: operation counts; see §2.4.6.

err: custom measures; see below for a description.

Note that for saddle point problems (like those constructed for tfocs_SCD), TFOCS is actually solving the
dual, so norm_x and norm_dx are computed using the dual variable.

If the printStopcrit option is true, then an additional column containing the values that are used in
the stopping criteria test is printed.

Using the errFcn option, you can construct your own error measurements for printing and/or logging.
The convention is very similar to stopFcn, in that errFcn should be a function handle or an array of function
handles, and the calling convention is identical; that is,

val = errFcn(f, x);

val = errFcn(f, z, x);

for tfocs.m and tfocs_SCD.m, respectively. However, unlike the stopFcn functions, error functions can
return any scalar numeric value they wish. The results will be stored in the matrix out.err, with each error
function given its own column.

9

2.4.6 Operation counts

Upon request, TFOCS can count the number of times that the algorithm requests each of the following five
computations:

• smooth function value,

• smooth function gradient,

• forward or adjoint linear operation,

• nonsmooth function value, and

• nonsmooth proximity minimization.

To do this, TFOCS wraps the functions with code that increments counter variables; the results are stored in
out.counts. Unfortunately, we have found that this wrapper causes a noticeable slowdown of the algorithm,
particularly for smaller models, so it is turned off by default. To activate it, set the countOpts option to
true.

Operation counts may also be used to construct a stopping criterion, using the maxCounts option to
set an upper bound on the number of each operation the algorithm is permitted to make. For instance, to
terminate the algorithm after 5000 applications of the linear operator, set

opts.maxCounts = [Inf, Inf, 5000, Inf, Inf].

If you set opts.maxCounts but not opts.countOps, TFOCS will only count those operations involved in the
stopping criteria. Of course, the number of operations is strongly correlated with the number of iterations,
so the best choice is likely to use opts.maxIts instead.

3 Constructing models

The key tasks in the construction of a TFOCS model is the specification of the smooth function, the linear
operator, and the nonsmooth function. The simplest way to do so is to use the suite of generators provided
by TFOCS. A generator is a MATLAB function that accepts a variety of parameters as input, and returns
as output a function handle suitable for use in TFOCS. The generators that TFOCS provides for smooth
functions, linear operators, and nonsmooth functions are listed in the subsections below.

If the generator library does not suit your application, then you will have to build your own functions.
To do so, you will need to be reasonably comfortable with MATLAB programming, including the concepts
of function handles and anonymous functions. The following MATLAB help pages are good references:

doc function_handle

MATLAB > User Guide > Mathematics > Function Functions

MATLAB > User Guide > Programming Fundamentals > Types of Functions

> Anonymous Functions

Optimization Toolbox > User Guide > Setting Up an Optimization Problem

> Passing Extra Parameters

The use of function handles and structures is similar to functions like fminunc from MATLAB’s Optimization
Toolbox.

Remember, TFOCS expects minimization objectives to be convex and maximization objectives to be
concave. TFOCS makes no attempt to check if your function complies with these conditions, or if the
quantities are computed correctly. The behavior of TFOCS when given incorrect function definitions is
undefined; it may terminate gracefully, but it may also exhibit strange behavior.

If you do implement your own functions—even better, if you implement your own function generators—
then we hope you will consider submitting them to us so that we may include them in a future version of
TFOCS.

10

3.1 Functions: smooth and nonsmooth

When TFOCS is given a smooth function f , it must be able to compute its gradient ∇f(x) at any point
x ∈ dom f . (Note that this implies that dom f is open.) On the other hand, when given a nonsmooth
function h, it must be able to compute the proximity operation

x = Φh(z, t) = argmin
x

h(x) + 1
2 t
−1〈x− z, x− z〉. (9)

Put another way, we are to find the unique value of z that satisfies

0 ∈ ∂h(z) + t−1(z − x), (10)

where ∂h(z) represents the subgradient of h at z. But in fact, for some differentiable functions, this proximity
operation can be computed efficiently: for instance,

f(x) = 1
2x

Tx =⇒ ∇f(x) = x, Φf (x, t) = (1− t)x. (11)

While there is no reason to use a nonsmooth function in this manner with tfocs.m, it does allow certain
smooth objectives to be specified for tfocs_SCD, or perhaps for other standard forms we might consider in
the future.

For that reason, TFOCS defines a single, unified convention for implementing smooth and nonsmooth
functions. The precise computation that TFOCS is requesting at any given time is determined by the number
of inputs and arguments employed:

Computing the value. With a single input and single output,

v = func(x)

the code must return the value of the function at the current point.

Computing the gradient. With a single input and two outputs,

[v, grad] = func(x)

the code must return the value and gradient of the function at the current point.

Performing proximity minimization. With two input arguments,

[vz, z] = func(x, t)

the code is to determine the minimizer z of the proximity minimization (9) above, and return the value of
the function f(z) evaluated at that point.

3.1.1 Generators

Smooth functions:

smooth_constant(d): f(x) ≡ d. d must be real.

smooth_linear(c, d): f(x) = 〈c, x〉+d. If d is omitted, then d=0 is assumed. c may be real or complex,
but d must be real.

smooth_quad(P, q, r): f(x) = 1
2 〈x, Px〉 + 〈q, x〉 + r. P must either be a matrix or a square linear

operator. It must be positive or negative semidefinite, as appropriate, but this is not checked. All arguments
are optional; the defaults are P=I, q=0, and r=0, thus calling smooth_quad with no arguments yields f(x) =
1
2 〈x, x〉. r must be real, but P and q may be complex.

smooth_logsumexp: f(x) = log
∑n
i=1 e

xi . This generator takes no arguments.

11

smooth_entropy: f(x) = −
∑n
i=1 xi log xi, over the set x ≥ 0. This generator also takes no arguments.

This function is concave. Important note: the entropy function fails the Lipschitz continuity test used to
guarantee the global convergence and performance of the first-order methods.

smooth_logdet(q,C): f(X) = 〈C,X〉 − q log det(X), for C symmetric/Hermitian and q > 0. By default,
q = 1 and C = 0. The function is convex, and the domain is the set of positive definite matrices. Important
note: like the entropy function, the gradient of logdet is not Lipschitz continuous.

smooth_logLLogistic(y): f(µ) =
∑
i yiµi−log(1+eµi) is the log-likelihood function for a logistic regression

model with two classes (yi ∈ {0, 1}) where P(Yi = yi|µi) = eµiyi/(1+eµi), and µ is the (unknown) parameter
to be estimated given that the data y have been observed.

smooth_logLPoisson(y): f(λ) =
∑
i−λi − yi log(λi) is the log-likelihood function when the yi are obser-

vations of the independent Poisson random variables Yi with parameters λi.

smooth_huber(tau): is defined component-wise f(x) =
∑
i h(xi) where h(x) =

{
x2/(2τ) |x| ≤ τ
|x| − τ/2 |x| > τ

. This

function is convex. By default, τ = 1; τ must be real and positive. Though it may be possible to also use
the Huber function in a nonsmooth context, it is currently not yet implemented.

smooth_handles(f,g): this allows the user to easily build their own function in the TFOCS format. f is
a function handle to the user’s smooth function, and g is a function handle to the gradient of this function.
Often the function and gradient can share some computation to save computational cost, so if this is the
case, you should write your own function and not use smooth_handles.

The functions smooth_constant, smooth_linear, some versions of smooth_quad (specifically, when P an
explicit matrix so that we can form its resolvent; this is efficient when P is a scalar or diagonal matrix),
and smooth_logdet can be used in both smooth and nonsmooth contexts since they support proximity
operations.

Indicator functions: See also Table 1 in the Appendix.

proj_Rn: the entire space Rn (i.e., the unconstrained case).

proj_Rplus: the nonnegative orthant Rn+ , {x ∈ Rn | mini xi ≥ 0}.
proj_box(l, u): the box {x ∈ Rn | ` � x � u}.
proj_simplex(s): the s-simplex St , {x ∈ Rn | mini xi ≥ 0,

∑
i xi = s}.

proj_l1(s): the `1 ball {x | ‖x‖1 ≤ s}.
proj_l2(s): the `2 ball {x | ‖x‖2 ≤ s}.
proj_linfty(s): the `∞ ball {x | ‖x‖∞ ≤ s}.
proj_max(s): the set {x | max(x) ≤ s}.
proj_psd (largescale_flag): the space of positive definite matrices: {X ∈ Rn×n |λmin(X + XH) ≥ 0}.
The largescale_flag is seldom useful for this projection.

proj_psdUTrace(s): the space of positive definite matrices with trace s: {X ∈ Rm×n |λmin(X +XH) ≥
0, Tr(X) = s}.
proj_nuclear(s). The nuclear norm ball scaled by s > 0: {X ∈ Rm×n | ‖X‖∗ ≤ s}.
proj_spectral(s, sym_flag, largescale_flag). The spectral norm ball scaled by s > 0: {X ∈
Rn×n | ‖X‖ ≤ s}. If sym_flag is specified and is equal to ’sym’, then the code assumes the matrix is
real-symmetric or complex-Hermitian and can switch from the SVD decomposition to the eigenvalue decom-
position, which is roughly 2× to 4× more efficient.

proj_maxEig(s, largescale_flag). The set of symmetric matrices with maximum eigenvalue less than
s.

For all of the cases that accept a single parameter s, it is optional; if omitted, s=1 is assumed. So, for
instance, proj_l2 returns the indicator of the `2 ball of unit radius.

12

Largescale options: For functions that accept the largescale_flag, this option, if set to true, tells the
function to use a Lanczos-based SVD or eigenvalue solver. For the SVD, it will use PROPACK if that software
is installed on your system (for mex wrappers to PROPACK, see http://svt.stanford.edu), and otherwise
use Matlab’s svds (which forms an augmented matrix and calls eigs). For eigenvalue decompositions, it
will use eigs, which is a Matlab wrapper to ARPACK software. The largescale options are most beneficial
when the input matrices are large and sparse.

Other nonsmooth functions: See also Table 1 in the Appendix.

prox_l1(s), prox_l2(s), prox_linf(s). h(x) = s‖x‖1, s‖x‖2, and s‖x‖∞, respectively. If s is a
vector, then prox_l1(s) represents h(x) =

∑
i ‖sixi‖1. There is experimental support for prox_l2(s) when

s is a vector.

prox_max(s) is the largest element of a vector, scaled by s.

prox_l1pos(s) represents h(x) =
∑
i sixi restricted to x ≥ 0. s may be a scalar or vector.

prox_l1l2(s) is the sum (i.e. `1 norm) of the `2 norm of the rows of a matrix. s may be a scalar or a
vector, in which case it scales the rows of the matrix.

prox_l1linf(s) is the sum (i.e. `1 norm) of the `∞ norm of the rows of a matrix. s may be a scalar or
a vector, in which case it scales the rows of the matrix.

prox_nuclear(s, largescale_flag). The nuclear norm scaled by s > 0: h(X) = s ·
∑n
i=1 σi(X) where

σi(X) are the singular values of X. See the earlier discussion of the largescale option in 3.1.1. We encourage
the user to experiment with their own nuclear norm proximity function if they want state-of-the-art efficiency.

prox_spectral(q, sym_flag). The spectral norm scaled by q > 0: h(X) = q‖X‖ = qmaxni=1 σi(X). If
sym_flag is specified and is equal to ’sym’, then the code assumes the matrix is real-symmetric or complex-
Hermitian and can switch from the SVD decomposition to the eigenvalue decomposition, which is roughly
2× to 4× more efficient.

prox_trace(q, largescale_flag). The trace of a matrix, scaled by q > 0: h(X) = qtr(X). For proximity
function, this imposes the constraint that X � 0.

prox_maxEig(q). The maximum eigenvalue of a symmetric matrix, scaled by q.

prox_boxDual(l,u,scale). The dual of h when h is prox_box. When using as conjnegF, scale it with −1
to make it h− instead of h∗, i.e. set scale=-1.

prox_hinge(q,r,y). The hinge loss function, hl(x) = q
∑
i[r − yixi]+, where [x]+ = max(0, x), and q > 0.

By default, q = r = y = 1.

prox_hingeDual(q,r,y). The dual to h when h is the (q, r, y) hinge loss function. Explicitly, when y = 1,

h(z) =

{
rz z ∈ [−q, 0]

+∞ else
. When using as conjnegF to the hinge loss, scale with−1, i.e. prox_hingeDual(q,r,-y).

prox_0. A synonym for proj_Rn; h(x) ≡ 0.

As with the indicator functions, s is optional; s=1 is assumed if it is omitted.

Function combining and scaling:

tfunc_sum(f1, f2, ..., fn). f(x) =
∑
i fi(x). The inputs are handles to other functions. They must

all have the same curvature; do not mix convex and concave functions together. Sums are only useful for
smooth functions; it is generally not possible to efficiently solve the proximity minimization for sums.

tfunc_scale(f1, s, A, b). f(x) = s · f(A · x+ b). s must be a real scalar, and f1 must be a handle to
a smooth function. A must be a scalar, a matrix, or a linear operator; and b must be a vector. A and b are
optional; if not supplied, they default to A=1, b=0.

13

http://svt.stanford.edu

This function can be used to scale both smooth and nonsmooth functions as long as A is a nonzero
scalar (or if it is omitted). If A is a matrix or linear operator, it can only be applied to smooth functions.
Furthermore, in this latter case it is more efficient to move A into the linear operator specification.

prox_scale(h, s) takes an implementation h to a proximity operator h(z) and returns an implementation
of the proximity operator h(sz) where s ∈ R is a scaling factor. It is less general than tfunc_scale.

Testing duals: To help the user convert a primal function h to the dual form h∗ or h−, we have provided
the function test_proxPair(h,g) which takes as inputs implementations h and g which represent h and g
where h = g∗. The function applies several well-known identities to look for violations that would indicate
h 6= g∗. For matrix variable functions, by providing a typical element of the domain, the function will
guess specifics about the domain (e.g. symmetric matrices, or positive semi-definite matrices). See the
help documentation of the test_proxPair file for more details. The identities are described in §8. It is
important to remember that the function tests for h = g∗ and not h = g−; to test for the latter, replace g

with prox_scale(g,-1).

Creating duals: To assist in creating dual functions, we provide the routine prox_dualize(g) which
automatically creates the dual function h = g∗. You may use this routine if you know the primal function,
or you may prefer to explicitly code the dual routine (i.e. you may have a computationally more efficient
algorithm for the dual, compared to the primal). To form h = g−, use prox_scale as mentioned above.

3.1.2 Building your own

In order to properly determine which computation TFOCS is requesting, it is necessary to test both nargin

(the number of input arguments) and nargout (the number of output arguments). The examples in this
section provide useful templates for performing these tests. That said, TFOCS will not attempt to compute
the gradient of any function it expects to be nonsmooth; likewise, it will not attempt a proximity minimization
for any function it expects to be smooth. Furthermore, when supplied, the step size t is guaranteed to be
positive.

With x and t being the only input arguments, it would seem impossible to specify functions to TFOCS
that depend on one or more known (but fixed) parameters. That problem is resolved using MATLAB’s
anonymous function facility. For example, consider how we would implement a quadratic function f(x) ,
1
2x

TPx+ qTx+ r. (Of course, TFOCS already includes a smooth_quad generator.) We can easily create a
function that accepts P , q, r, and x, and returns the value and gradient of the function:

function [f, g] = quad_func(P, q, r, x, t)

if nargout == 5,

error(’This function does not support proximity minimization.’);

else

g = P * x + q;

f = 0.5 * (x’ * (g + q)) + r;

end

TFOCS cannot use this function in this form. But using an anonymous function, we can “hide” the first
three arguments as follows:

my_quad = @(varargin)quad_func(P, q, r, varargin{:});

Now, calls to my_quad(x) will automatically call quad_func with the given values of P, q, and r. The way
we have designed it my_quad(x, t) will result in an error message.

There is one important caveat here: once my_quad has been created, the values of P, q, and r that it
uses are fixed. This is due to the way MATLAB constructs anonymous functions. So don’t change P after
the fact expecting your function to change with it! Instead, to you must actually re-create the anonymous
function again.

14

For an example of an indicator function, let us show how to implement the function generated by
proj_box. A four-argument version of the function is

function [hx, x] = proj_box_lu(l, u, x, t)

hx = 0;

if nargin == 4,

x = max(min(x, u), l);

elseif nargout == 2,

error(’This function is not differentiable.’);

elseif any(x < l) || any(x > u),

hx = Inf;

end

To convert this to a form usable by TFOCS, we utilize an anonymous function to hide the first two arguments:

my_box = @(varargin)proj_box_lu(l, u, varargin{:});

Note the use of the value +Inf to indicate that the input x falls outside of the box.
Finally, for an example of a nonsmooth function that is not an indicator, here is an implementation of

the `1 norm h(z) = ‖z‖1:

function [hx, x] = l1_norm(x, t)

if nargin == 2,

x = sign(x) .* max(abs(x) - t, 0);

elseif nargout == 2,

error(’This function is not differentiable.’);

end

hx = sum(abs(x));

This is the well known shrinkage operator from sparse recovery. TFOCS includes a more advanced version
of this function in its library with support for scaling and complex vectors.

To assist with building nonsmooth functions, see private/tfocs_prox.m which is analogous to linop_handles.m
and smooth_handles.m. For smooth and nonsmooth functions, we have some test functions test_smooth.m
and test_nonsmooth.m which can help find bugs (but unfortunately cannot guarantee bug-free code).

3.2 Linear operators

The calling sequence for the implementation linearF of a linear operator A is as follows:

y = linearF(x, mode)

The first input x is the input to the operation. The second input mode describes what the operator should
do, and can take one of three values:

• mode=0: the function should return the size of the linear operator; more on this below. The first
argument x is ignored.

• mode=1: the function should apply the forward operation y = A(x).

• mode=2: the function should apply the adjoint operation y = A∗(x).

In addition to the generators listed below, TFOCS provides two additional functions, linop_normest and
linop_test, that provide useful information about linear operators. The function linop_normest estimates
the induced operator norm

‖A‖ , max
‖x‖=1

‖A(x)‖ = max
〈x,x〉=1

〈A(x),A(x)〉1/2 (12)

which is useful when rescaling matrices for more efficient computation (see §4.5). The function linop_test

performs some useful tests to verify the correctness of a linear operator; see §3.2.2 below for more information.

15

3.2.1 Generators

linop_matrix(A, cmode). A(x) = A · x. If A is complex, then the second input cmode is required; it is
described below.

linop_dot(c, adj). A(x) = 〈c, x〉 if adj=false or adj is omitted; A(x) = c · x if adj is true. In other
words, linop_dot(c, true) is the adjoint of linop_dot(c).

linop_TV(sz). Implements a real-to-complex total variation operator for a matrix of size sz. Given an
instance tv_op of this operator, the total variation of a matrix X is norm(tv_op(X,1),1).

linop_fft(N, M, cmode). The discrete Fourier transform using Matlab’s fft and ifft. The size of the
input is N , and if M is supplied (M ≥ N), this will use a zero-padded DFT of size M . The cmode option
is either r2c for the real-to-complex DFT (default), or c2c for the complex-to-complex DFT, or r2r for
a variant of the real-to-complex DFT that takes the complex output (which has conjugate-symmetry) and
re-arranges it to real numbers. For all variants, the adjoint is automatically defined appropriately.

linop_scale(s). A(x) = s · x. s must be a scalar.

linop_handles(sz, Af, At, cmode). Constructs a linear operator from two function handles Af and At

that implement the forward and adjoint operations, respectively. The sz parameter describes the size of the
linear operator, according to the rules described in §3.2.2 below. The cmode string is described below.

linop_compose(A1, A2, ..., An). Constructs the operator formed from the composition of n supplied
operators or matrices: A(x) = A1(A2(...AN (x)...)). Any matrices must be real; complex matrices must first
be converted to operators first using linop_matrix.

linop_spot(opSpot, cmode). Constructs a TFOCS-compatible linear operator from a linear operator
object from the SPOT library [2]. If the operator is complex, then the cmode string must also be supplied.
In a later version of TFOCS, you will be able to pass SPOT operators directly into TFOCS.

linop_adjoint(A1). A(x) = A∗1(x). That is, linop_adjoint returns a linear operator that is the adjoint
of the one supplied.

linop_subsample. Used for subsampling the entries of a vector, the rows of a matrix (e.g. for a partial
Fourier Transform), or the entries of a matrix (e.g. for matrix completion).

linop_vec. Reduces a matrix variable to a vectorized version.

linop_reshape. Reshapes the dimension of a variable, so this includes linop_vec as a special case.

For linop_matrix, linop_handles, and linop_spot, a string parameter cmode is used to specify how
the operator is to interact with complex inputs. The string can take one of four values:

• ’C2C’: The input and output spaces are both complex.

• ’R2C’: The input space is real, the output space is complex.

• ’C2R’: The input space is complex, the output space is real.

• ’R2R’: The input and output spaces are both real. This is provided primarily for completeness, and
effectively causes imag(A) to be ignored.

So for instance, given the operator

linearF = linop_matrix(A, ’R2C’),

The forward operation linearF(x,1) will compute A*x, and the adjoint operation linearF(x,2) will com-
pute real(A’*x). If one of these operators is fed a complex input when it is not expected—for instance, if
linearF is fed a complex input with mode=2—then an error will result.

16

3.2.2 Building your own

When building your own linear operator, one of the trickier aspects is correctly reporting the size of the
linear operator when mode=0. There are actually two ways to do this. For linear operators that operate
on column vectors, we can use a standard MATLAB convention [m,n], where m is the number of output
elements and n is the number of n input elements (in the forward operation). Note that this is exactly the
result that would be returned by size(A) if A were a matrix representation of the same operator.

However, TFOCS also supports operators that can operate on matrices and arrays; and a future ver-
sion will support custom vector space objects as well. Therefore, the standard MATLAB convention is
insufficient. To handle the more general case, a linear operator object can return a 2-element cell array
{ i_size, o_size }, where i_size is the size of the input, and o_size is the size of the output (in the
forward operation). Note that the input size comes first.

For example, consider the linear operator described by the Fourier transform:

function y = fft_linop(N, x, mode)

switch mode,

case 0, y = [N,N];

case 1, y = (1/sqrt(N)) * fft(x);

case 2, y = sqrt(N) * ifft(x);

end

To use the alternate size convention, replace the case 0 line above with this:

case 0, y = { [N,1], [N,1] };

For use with TFOCS, we construct an anonymous function to hide the first input:

fft_1024 = @(x,mode)fft_linop(N, x, mode);

It is a common error when constructing linear operator objects to compute the adjoint operation incor-
rectly. For instance, note the scaling factors used in fft_linop above, which yield a unitary linear operator;
other scaling factors are possible, but to omit them altogether would destroy the adjoint relationship. The
key mathematical identity that defines the adjoint of A∗ is its satisfaction of the inner product test,

〈y,A(x)〉 = 〈A∗(y), x〉 ∀x, y. (13)

We encourage you to fully test your linear operators by verifying compliance with this condition before
attempting to use it in TFOCS. The function linop_test will do this for you: it accepts a linear operator
as input and performs a number of inner product tests using randomly generated data. Upon completion, it
prints out measures of deviation from compliance with this test, as well as estimates of the operator norm.

4 Advanced usage

4.1 Matrix variables

It is not necessary to limit oneself to simple vectors in TFOCS; the system will happily accept variables that
are matrices or even multidimensional arrays. Image processing models, for instance, may keep the image
data in its natural two-dimensional matrix form.

The functions tfocs_dot.m and tfocs_normsq.m provide an implementation of the inner product 〈x, y〉
and the implied squared norm ‖x‖2 = 〈x, x〉 that work properly with matrices and arrays. Using these
operators instead of your own will help to minimize errors.

Linear operators must be implemented with care; in particular, you must define the size behavior properly;
that is, the behavior when the linear operator is called with the mode=0 argument. For instance, to define
an operator linearF that accepts arrays of size m × n as input and returns vectors of size p as output, a

17

call to linearF([],0) must return the cell array {[m,n],[p,1]}. The reader is encouraged to study §3.2.2
closely, and to consider the matrix-based example models provided in the library itself.

Smooth and nonsmooth functions may be implemented to accept matrix or array-valued inputs as well.
Standard definitions of convexity or concavity must hold. For instance, if f is concave, then it must be the
case that

f(Y) ≤ f(X) + 〈∇f(X), Y −X〉 ∀X ∈ dom f, Y (14)

Note that ∇f(X) is a member of the same vector space as X itself. Particular care must be exercised
to implement the proximity minimization properly; for matrix variables, for instance, the corresponding
minimization involves the Frobenius norm:

Φh(X, t) = argmin
Z

h(Z) + 1
2 t
−1‖Z −X‖2F (15)

4.2 Complex variables and operators

As we have already stated, TFOCS supports complex variables, linear operators on complex spaces, and
functions accepting a complex input. Nevertheless, we feel it worthwhile to collect the various caveats that
one must follow when dealing with complex variables under a single heading.

First of all, note that TFOCS works exclusively with Hilbert spaces. Thus they must have a real inner
product; e.g., for Cn, 〈x, y〉 = <xHy. In other contexts, complex vector spaces are given complex inner
products satisfying 〈x, y〉 = 〈y, x〉; but only the real inner product allows us to define the metric ‖x‖ =
〈x, x〉1/2. This distinction is particularly important when verifying the correctness of linear operators applied
to complex vector spaces, as discussed in §3.2.2. TFOCS provides a function tfocs_dot.m that computes
the correct inner product for all real and complex vectors and spaces. The function tfocs_normsq.m is
defined as well, and implements ‖x‖2 in a manner consistent with that inner product.

Secondly, note that care must be taken when constructing linear operators that map from real to complex
vector spaces, or vice versa. The complex-to-real direction must be implemented properly—specifically, the
operator itself ensures that the output is real. This is precisely why the linop_matrix and linop_handles

functions require an explicit statement of the intended real/complex behavior. In the case of linop_matrix,
the function it generates will take the real part for you, when appropriate. But in the case of linop_handles,
it expects the functions you provide to do this work, and will throw an error if it detects otherwise.

Finally, note that convex and concave functions by their very definition are real-valued, even if they
accept complex input. The same caveats given for matrix variables in §4.1 also apply here. For instance,
note that the gradient of a function accepting complex input is itself complex.

4.3 Block structure

Suppose for a moment you wish to construct a model whose smooth component is the sum of M > 1 simpler
smooth functions, like so:

minimize φ(x) ,
∑M
i=1 fi(Ai(x) + bi) + h(x) (16)

This can be accomplished using a combination of calls to tfocs_sum and tfocs_scale:

f = tfocs_sum(tfocs_scale(f1, 1, A1, b1), ...

tfocs_scale(f2, 1, A2, b2), ...

But this approach circumvents more efficient use of linear operators that TFOCS provides; and it is quite
cumbersome to boot.

As an alternative, TFOCS allows you to specify a cell array of smooth functions, and a corresponding
cell matrix of affine operations, like so:

smoothF = { f1, f2, f3, f4 };

affineF = { A1, b1 ; A2, b2 ; A3, b3 ; A4, b4 };

[x, out] = tfocs(smoothF, affineF, nonsmoothF);

18

Note the use of both commas and semicolons in affineF to construct a 4× 2 cell array: the number of rows
equals the number of smooth functions provided.

Now consider the following case, in which the optimization variable has Cartesian structure, and the
nonsmooth function is separable:

minimize φ(x) , f(
∑N
j=1Aj(x(j)) + b) +

∑N
j=1 hj(x

(j)) (17)

To accommodate this case, TFOCS allows the affine operator matrix to be extended horizontally :

affineF = { A1, A2, A3, A4, b };

nonsmoothF = { h1, h2, h3, h4 };

[x, out] = tfocs(smoothF, affineF, nonsmoothF);

The number of columns in the cell array is one greater than the number of nonsmooth functions, due to the
presence of the constant offset b. The return value x will be a four-element cell array; likewise, if we were to
specify an initial point x0, we must provide a cell array of four elements.

The logical combination of these cases yields a model with multiple smooth functions, linear operators,
and nonsmooth functions:

minimize φ(x) ,
∑M
i=1 fi(

∑N
j=1Aij(x(j)) + b) +

∑N
j=1 hj(x

(j)) (18)

A corresponding TFOCS model might look like this:

smoothF = { f1, f2 };

affineF = { A11, A12, A13, A14, b1 ; A21, A22, A23, A24, b2 };

nonsmoothF = { h1, h2, h3, h4 };

[x, out] = tfocs(smoothF, affineF, nonsmoothF);

Again, the number of rows of affineF equals the number of smooth functions, while the number of columns
equals the number of nonsmooth functions plus one.

The above are the basics. To that, we have added some conventions that, we hope, will further simplify
the use of block structure:

• The scalar value 0 can be used in place of any entry in the affine operator matrix; TFOCS will determine
its proper dimension if the problem is otherwise well-posed.

• Similarly, the scalar value 1 can be used in place of any linear operator to represent the identity
operation Aij(x) ≡ x.

• Real matrices can be used in place of linear operators; they will be converted to linear operators auto-
matically. (You must convert complex matrices yourself, so you can properly specify the real/complex
behavior.)

• If all of the constant offsets are zero, the last column may be omitted entirely.

• For a smooth-plus-affine objective f(A(x) + b) + 〈c, x〉+ d, the TFOCS model is

smoothF = { f, smooth_linear(1) };

affineF = { A, b ; linop_dot(c), d };

[x, out] = tfocs(smoothF, affineF, nonsmoothF);

In this case, we have provided a simplification: you can omit the smooth_linear term and the
linop_dot conversion, and let TFOCS add them for you:

smoothF = f;

affineF = { A, b ; c, d };

[x, out] = tfocs(smoothF, affineF, nonsmoothF);

19

This convention generalizes to the case when you have multiple smooth or nonsmooth functions as
well. The rule is this: if the number of rows in the affine matrix is one greater than the number of
smooth functions, TFOCS assumes that the final row represents a linear functional.

Many of the solver_ drivers utilize this block composite structure. You are encouraged to examine those
as further examples of how this works. It may seem complicated at first—but we argue that this is because
the models themselves are complicated. We hope that our cell matrix approach has at least made it as simple
as possible to specify the models once they are formulated.

4.4 Block structure and SCD models

For tfocs_SCD.m, the composite standard form looks like this:

minimize
∑N
j=1

(
f̄j(x

(j)) + 1
2µ‖x

(j) − x(j)0 ‖2
)

+
∑M
i=1 hi(

∑N
j=1Ai,j(x(j)) + bi) (19)

In this case, the composite convention is precisely reversed:

• The number of rows of the affine matrix must equal the number of nonsmooth functions hi, or be one
greater. In the latter case, the last row is assumed to represent a linear functional.

• The number of columns must equal the number of objective functions fj , or be one greater. In the
latter case, the last column represents the constant offsets bi.

It turns out that the composite form comes up quite often when constructing compressed sensing problems
in analysis form. Consider the model

minimize α‖Wx‖1 + 1
2µ‖x− x0‖

2
2 + h(A(x) + b). (20)

where W is any linear operator, α > 0, and h is prox-capable. At first glance, this problem resembles the
SCD standard form (4) with f̄ = α‖Wx‖1, but f̄ is not prox-capable. By rewriting it as follows,

minimize 0 + 1
2µ‖x− x0‖

2
2 + h(A(x) + b) + α‖Wx‖1 (21)

it is now in composite SCD form (19) with (M,N) = (2, 1); specifically,

f̄1(x) , 0, h1(y1) , h(y2), h2(y2) , α‖y‖1, (A1, b1) , (A, b), (A2, b2) , (W, 0) (22)

So this problem may indeed be solved by tfocs_SCD.m. In particular, the conjugate h∗2(z) is the indicator
function of the norm ball {z | ‖z‖∞ ≤ α}. The code might look like this:

affineF = { A, b ; W, 0 };

dualproxF = { hstar, proj_linf(alpha) };

[x, out] = tfocs_SCD(0, affineF, dualproxF);

where, as its name implies, hstar implements the conjugate h∗. This technique is used in solvers such as
solver_sBPDN_W.m and solver_sBPDN_TV.m.

This technique generalizes to f̄ =
∑
i=1 αi‖Wi‖ in a natural fashion.

4.5 Scaling issues

With the SCD model, every constraint corresponds to a dual variable. Consider the model in (20) where
h is the indicator function of the zero set; this is equivalent to imposing the constraint that A(x) + b = 0.
The SCD model will create two dual variables, λ1 corresponding to the constraint A(x) + b = y1 and λ2
corresponding to Wx = y2.

20

The negative Hessian of the smooth part of the dual function is bounded (in the PSD sense) by the

block matrix 2
µ

(
AAT 0

0 WWT

)
. Thus the Lipschitz constant is given by L = 2

µ max(‖AAT ‖, ‖WWT ‖).

Intuitively, λ1 has scale ‖AAT ‖ and λ2 has scale ‖WWT ‖. If these scales differ, then because the Lipschitz
constant is limited by the small scale variable, the step sizes will be very small for the variable with the large
scale. This is similar to the phenomenon of a “stiff” problem in differential equations.

Luckily, the fix is quite easy. Recall the α parameter from (20), and note that it does not affect the Lips-
chitz constant. This suggests that we solve the problem using α̂‖Ŵx‖1 = α‖Wx‖1 where Ŵ = W‖A‖/‖W‖
and α̂ = α‖W‖/‖A‖. This ensures that Ŵ and A have the same scale.

In general, the user must be aware of this scaling issue and implement the fix as suggested above. For
some common solvers, such as solver_sBPDN_W and solver_sBPDN_TV, it is possible to provide ‖A‖2 via
the opts structure and the solver will perform the scalings automatically.

4.6 Continuation

Continuation is a technique described in [1] to systematically reduce the effect of the nonzero µ parameter
used in the TFOCS SCD model. The software package includes the file continuation.m which implements
continuation. For convenience, tfocs_SCD.m automatically uses continuation when specified in the options.

To turn on continuation, set opts.continuation = true. To specify further options to control how
continuation is performed, call tfocs_SCD with one extra parameter continuationOptions, which is a
structure of options used in the same way as opts. As in § 2.3.2, you may call the continuation solver with
no options (continuation()) to see a list of available options for continuationoOptions.

The continuation technique requires solving several SCD problems, but it is often beneficial since it allows
one to use a larger value of µ and thus the subproblems are solved more efficiently.

4.7 Custom vector spaces

We are currently experimenting with giving TFOCS the capability of handling custom vector spaces defined
by user-defined MATLAB objects. This is useful when the iterates contain a kind of structure that is not
easily represented by MATLAB’s existing dense and sparse matrix objects. For example, in many sparse
matrix completion problems, it is advantageous to store the iterates in the form S +

∑r
i=1 siviw

T
i , where S

is sparse (even zero) and the summation represents a low-rank matrix stored in dyadic form.
The basic idea is this: we define a custom MATLAB object that can act like a vector space, giving

it support for addition, subtraction, multiplication by scalars, and real inner products. If done correctly,
TFOCS can manipulate these objects in the same manner that it currently manipulates vectors and matrices.

Our first attempts will focus on the symmetric and non-symmetric versions of this sparse-plus-low-rank
structure. Once these are complete, we will document the general interface so that users can construct their
own custom vector spaces. Of course, this is a particularly advanced application so we expect only a handful
of experts will join us. But if you are already comfortable with using MATLAB’s object system, feel free to
contact us in advance with your thoughts.

4.8 Standard form linear and semidefinite programming

The power of the SCD method is apparent when you consider the standard linear program (LP)

minimize
x

cTx such that Ax = b, x ≥ 0.

By putting this in the SCD framework, it is possible to solve the LP without ever needing to solve a (possibly
very large) system of equations. The package includes the solver_sLP solver to cover this standard form.
When the LP has more structure, it is likely more efficient to write a special purpose TFOCS wrapper, but
the generic LP solver can be very useful for prototyping.

21

It is similarly possible to solve the standard form semi-definite program (SDP):

minimize
X

〈A0, X〉 such that A(X) = b,X � 0

and its dual (up to a minus sign in the optimal value), the linear matrix inequality (LMI) problem:

minimize
y

bT y such that A0 +
∑
i

yiAi � 0

whereA0, A1, . . . , Am are symmetric (if real) or Hermitian (if complex), and b is real. The solvers solver_sSDP
and solver_sLMI handle these forms.

5 Feedback and support

If you encounter a bug in TFOCS, or an error in this documentation, then please end us an email to
tfocs@cvxr.com with your report. In order for us to effectively evaluate a bug report, we will need the
following information:

• The output of the tfocs_version command, which provides information about your operating system,
your MATLAB version, and your TFOCS version. Just copy and paste this information from your
MATLAB command window into your email.

• A description of the error itself. If TFOCS itself provided an error message, please copy the full text
of the error output into the bug report.

• If it is at all possible, please provide us with a brief code sample and supporting data that reproduces
the error. If that cannot be accomplished, please provide a detailed description of the circumstances
under which the error occurred.

We have a strong interest in making sure that TFOCS works well for its users. After all, we use it ourselves!
Please note, however, that as with any free software, support is likely to be limited to bug fixes, accom-

plished as we have time to spare. In particular, if your question is not related to a bug, it is not likely that
we will be able to offer direct email support. Instead, we would encourage you to visit the CVX Forum
(http://ask.cvxr.com), a question and answer forum modeled in the style of the StackExchange family of
sites. As the name implies this forum was created by CVX Research and also serves as a forum for questions
about CVX (http://cvxr.com). However, TFOCS questions are welcome there as well, and the authors of
TFOCS do make an effort to participate in that forum regularly.

If you use TFOCS in published research, we ask that you acknowledged this fact in your publication, by
citing both [1] and the software itself in your bibliography. And please drop us a note and let us know that
you have found it useful!

6 Acknowledgments

We are very grateful to many users who have submitted bug reports or simply told us what they do or do
not like about the software. In particular, much thanks to Graham Coleman and Ewout van den Berg.

7 Appendix: dual functions

When solving the Smooth Conic Dual formulation, as in Equation (4), the user must convert to either the
convex dual function (for (4)) or to the dual cone (for (5)). Both the dual function and dual cone interpre-
tations are equivalent; in this appendix, we briefly review some facts for the dual function interpretation.

22

http://ask.cvxr.com
http://cvxr.com

Table 1: Common functions and their conjugates; functions denoted with † satisfy h∗ = h−.

h(y) TFOCS atom conjugate h∗(z) TFOCS atom of the conjugate
h(y) = 0 = ιRn prox_0, proj_Rn h∗(z) = ιz=0 proj_0†

h(y) = c smooth_constant h∗(z) = ιz=0 proj_0†

h(y) = ιRn
+

proj_Rplus h∗(z) = h(z) proj_Rplus

h(Y) = ιY�0 proj_psd h∗(Z) = h(Z) proj_psd

h(y) = ‖y‖1 prox_l1 h∗(z) = ι‖z‖∞≤1 proj_linf†

h(y) =
∑
i yi + ιy≥0 prox_l1pos h∗(z) = ιmax(z)≤1 proj_max

h(y) = ι∑
i yi≤1,y≥0 proj_simplex h∗(z) = max(z) ≤ 1 prox_max

h(y) = ‖y‖∞ prox_linf h∗(z) = ι‖z‖1≤1 proj_l1†

h(y) = ‖y‖2 prox_l2 h∗(z) = ι‖z‖2≤1 proj_l2†

h(Y) = ‖Y ‖1,2 prox_l1l2 h∗(Z) = ‖Z‖∞,2 = ‖Z‖2→∞ NA
h(Y) = ‖Y ‖1,∞ prox_l1linf h∗(Z) = ‖Z‖∞,1 = ‖Z‖∞→∞ proj_linfl2†

h(Y) = ‖Y ‖tr prox_nuclear h∗(Z) = ι‖Z‖≤1 proj_spectral†
h(Y) = ‖Y ‖ prox_spectral h∗(Z) = ι‖Z‖tr≤1 proj_nuclear†

h(Y) = trY + ιY�0 prox_trace h∗(Z) = ιλmax(Z)≤1 proj_maxEig

h(Y) = ιtrY≤1,Y�0 proj_psdUTrace h∗(Z) = λmax(Z) + ιZ�0 prox_maxEig

h(y) = ιl≤y≤u proj_box h∗(z) =
∑
i max(zili, ziui) prox_boxDual

h(y) = hl(y) see §3.1.1 prox_hinge see §3.1.1 prox_hingeDual

h(Y) = − log detX smooth_logdet see §3.1.1 NA
h(y) = cTx smooth_linear h∗(z) = ιz=c proj_0(c)

h(y) = cTx+ xTPx/2 smooth_quad h∗(z) = 1
2‖z − c‖

2
P−1 NA

The convex dual function (also know as the Fenchel or Fenchel-Legendre dual) of a proper convex function
h is given by Equation (7): h∗(z) , supy〈z, y〉 − h(y). Let ιA denote the indicator function of the set A:

ιI(x) =

{
0 x ∈ A
+∞ x /∈ A

.

Define the dual norm of any norm ‖ · ‖ to be ‖ · ‖∗ where

‖y‖∗ , sup
‖x‖≤1,x 6=0

〈y, x〉.

For the `p norm ‖x‖p , (
∑
|xi|p)1/p, the dual norm is the `q norm where 1/p+ 1/q = 1 for p ≥ 1 and with

the convention that 1/∞ = 0.
With respect to using the software, the most important relation is

h(y) = s‖y‖ = h∗∗(y) ⇐⇒ h∗(z) = ι{z:‖z‖∗≤s}. (23)

When h is an indicator function, the proximity operator (2) is just a projection, and in the TFOCS
package the corresponding atom is prefixed with proj_ as opposed to prox_.

Using (23), Table 1 lists below a table of common functions and their convex conjugates, as well as the
names of their TFOCS atoms.

We write ‖A‖1,p to denote the sum of the p-norms of the rows of a matrix. This is in contrast to the

norm‖A‖q→p ,
∑
z 6=0 ‖Az‖p/‖z‖q. The ‖ · ‖1,2 norm is also know as the row-norm of a matrix. The spectral

norm ‖A‖ is the maximum singular value; the trace norm ‖A‖tr (also known as the nuclear norm to the
spectral norm) is the dual of the spectral norm (see §3.1.1). When an atom has not been implemented, it is
marked as “NA.” These atoms may be added in the future if there is demand for them.

23

8 Appendix: proximity function identities

Let f be a proper, lower semi-continuous convex function, and let g be the Fenchel conjugate of f as in
(7). Then for all x in the domain of f , and for all γ > 0, we have the following relations for the proximity
function defined in (9). First, define

xf = Φf (x, γ), xg = γΦg(x/γ, γ
−1).

Then

x = xf + xg (24)

γ−1〈xf , xg〉 = f(xf) + g(γ−1xg) (25)

1

2γ
‖x‖2 =

(
min
u
f(u) +

1

2γ
‖u− x‖22

)
+

(
min
v
g(v) +

1

2γ−1
‖v − γ−1x‖22

)
(26)

These equalities are due to Moreau; see Lemma 2.10 [4].

9 Appendix: list of TFOCS functions

Main TFOCS program
tfocs Minimize a convex problem using a first-order algorithm.
tfocs_SCD Smoothed conic dual form of TFOCS, for problems with non-trivial linear oper-

ators.
continuation Meta-wrapper to run TFOCS_SCD in continuation mode.

Miscellaneous functions
tfocs_version Version information.
tfocs_where Returns the location of the TFOCS system.

Operator calculus
linop_adjoint Computes the adjoint operator of a TFOCS linear operator
linop_compose Composes two TFOCS linear operators
linop_scale Scaling linear operator.
prox_dualize Define a proximity function by its dual
prox_scale Scaling a proximity/projection function.
tfunc_scale Scaling a function.
tfunc_sum Sum of functions.
tfocs_normsq Squared norm.
linop_normest Estimates the operator norm.

Linear operators
linop_matrix Linear operator, assembled from a matrix.

24

linop_dot Linear operator formed from a dot product.
linop_fft Fast Fourier transform linear operator.
linop_TV 2D Total-Variation (TV) linear operator.
linop_TV3D 3D Total-Variation (TV) linear operator.
linop_handles Linear operator from user-supplied function handles.
linop_spot Linear operator, assembled from a SPOT operator.
linop_reshape Linear operator to perform reshaping of matrices.
linop_subsample Subsampling linear operator.
linop_vec Matrix to vector reshape operator

Projection operators (proximity operators for indicator functions)
proj_0 Projection onto the set {0}
proj_box Projection onto box constraints.
proj_l1 Projection onto the scaled 1-norm ball.
proj_l2 Projection onto the scaled 2-norm ball.
proj_linf Projection onto the scaled infinity norm ball.
proj_linfl2 Projection of each row of a matrix onto the scaled 2-norm ball.
proj_max Projection onto the scaled set of vectors with max entry less than 1.
proj_nuclear Projection onto the set of matrices with nuclear norm less than or equal to q.
proj_psd Projection onto the positive semidefinite cone.
proj_psdUTrace Projection onto the positive semidefinite cone with fixed trace.
proj_Rn “Projection” onto the entire space.
proj_Rplus Projection onto the nonnegative orthant.
proj_simplex Projection onto the simplex.
proj_conic Projection onto the second-order (aka Lorentz) cone.
proj_singleAffine Projection onto a single affine equality or in-equality constraint.
proj_boxAffine Projection onto a single affine equality along with box constraints.
proj_affine Projection onto general affine equations, e.g., solutions of linear equations.
proj_l2group Projection of each group of coordinates onto 2-norm balls.
proj_spectral Projection onto the set of matrices with spectral norm less than or equal to q.
proj_maxEig Projection onto the set of symmetric matrices with maximum eigenvalue less than

1.

Proximity operators of general convex functions
prox_0 The zero proximity function:
prox_boxDual Dual function of box indicator function {l ≤ x ≤ u}
prox_hinge Hinge-loss function.
prox_hingeDual Dual function of the Hinge-loss function.
prox_l1 L1 norm.
prox_Sl1 Sorted (aka) ordered L1 norm.

25

prox_l1l2 L1-L2 block norm: sum of L2 norms of rows.
prox_l1linf L1-LInf block norm: sum of L2 norms of rows.
prox_l1pos L1 norm, restricted to x ≥ 0
prox_l2 L2 norm.
prox_linf L-infinity norm.
prox_max Maximum function.
prox_nuclear Nuclear norm.
prox_spectral Spectral norm, i.e. max singular value.
prox_maxEig Maximum eigenvalue of a symmetric matrix.
prox_trace Nuclear norm, for positive semidefinite matrices. Equivalent to trace.

Smooth functions
smooth_constant Constant function generation.
smooth_entropy The entropy function −

∑
i xi log(xi)

smooth_handles Smooth function from separate f/g handles.
smooth_huber Huber function generation.
smooth_linear Linear function generation.
smooth_logdet The -log(det(X)) function.
smooth_logLLogistic Log-likelihood function of a logistic:

∑
i yiµi − log(1 + eµi)

smooth_logLPoisson Log-likelihood of a Poisson:
∑
i−λi + xi log(λi)

smooth_logsumexp The function log(
∑
exi)

smooth_quad Quadratic function generation.

Testing functions
test_nonsmooth Runs diagnostic tests to ensure a non-smooth function conforms to TFOCS con-

ventions
test_proxPair Runs diagnostics on a pair of functions to check if they are Legendre conjugates.
test_smooth Runs diagnostic checks on a TFOCS smooth function object.
linop_test Performs an adjoint test on a linear operator.

Premade solvers for specific problems (vector variables)
solver_L1RLS l1-regularized least squares problem, sometimes called the LASSO.
solver_LASSO Minimize residual subject to l1-norm constraints.
solver_SLOPE Sorted L One Penalized Estimation; like LASSO but with an ordered l1 norm;

see documentation.
solver_sBP Basis pursuit (l1-norm with equality constraints). Uses smoothing.
solver_sBPDN Basis pursuit de-noising. BP with relaxed constraints. Uses smoothing.
solver_sBPDN_W Weighted BPDN problem. Uses smoothing.
solver_sBPDN_WW BPDN with two separate (weighted) l1-norm terms. Uses smoothing.
solver_sDantzig Dantzig selector problem. Uses smoothing.

26

solver_sDantzig_W Weighted Dantzig selector problem. Uses smoothing.
solver_sLP Generic linear programming in standard form. Uses smoothing.
solver_sLP_box Generic linear programming with box constraints. Uses smoothing.

Premade solvers for specific problems (matrix variables)
solver_psdComp Matrix completion for PSD matrices.
solver_psdCompConstrainedTrace

Matrix completion with constrained trace, for PSD matrices.
solver_TraceLS Unconstrained form of trace-regularized least-squares problem.
solver_sNuclearBP Nuclear norm basis pursuit problem (i.e. matrix completion). Uses smoothing.
solver_sNuclearBPDN Nuclear norm basis pursuit problem with relaxed constraints. Uses smoothing.
solver_sSDP Generic semi-definite programs (SDP). Uses smoothing.
solver_sLMI Generic linear matrix inequality problems (LMI is the dual of a SDP). Uses

smoothing.

Algorithm variants
tfocs_AT Auslender and Teboulle’s accelerated method.
tfocs_GRA Gradient descent.
tfocs_LLM Lan, Lu and Monteiro’s accelerated method.
tfocs_N07 Nesterov’s 2007 accelerated method.
tfocs_N83 Nesterov’s 1983 accelerated method; also by Beck and Teboulle 2005 (FISTA).
tfocs_TS Tseng’s modification of Nesterov’s 2007 method.

References

[1] S. Becker, E. J. Candès, and M. Grant, Templates for convex cone problems with applications to sparse
signal recovery, Math. Prog. Comp. 3 (2011), no. 3, 165–218. http://tfocs.stanford.edu

[2] E. van den Berg and M. Friedlander. Spot—a linear-operator toolbox. Software and web site, Department
of Computer Science, University of British Columbia, 2009. http://www.cs.ubc.ca/labs/scl/spot/.

[3] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke, R. Burachik, P. L.
Combettes, V. Elser, D. R. Luke, H. Wolkowicz, Editors. New York: Springer-Verlag, 2010. http:

//arxiv.org/abs/0912.3522

[4] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, SIAM Multiscale
Model. Simul. 4 (2005), no. 4, 1168–1200. http://www.ann.jussieu.fr/~plc/mms1.pdf

27

http://tfocs.stanford.edu
http://www.cs.ubc.ca/labs/scl/spot/
http://arxiv.org/abs/0912.3522
http://arxiv.org/abs/0912.3522
http://www.ann.jussieu.fr/~plc/mms1.pdf

	Introduction
	Example library

	Software details
	Installation
	File overview
	Calling sequences
	The initial point
	The options structure
	The SCD solver

	Customizing the solver
	Selecting the algorithm
	Improving strong convexity performance
	Line search control
	Stopping criteria
	Data collection and printing
	Operation counts

	Constructing models
	Functions: smooth and nonsmooth
	Generators
	Building your own

	Linear operators
	Generators
	Building your own

	Advanced usage
	Matrix variables
	Complex variables and operators
	Block structure
	Block structure and SCD models
	Scaling issues
	Continuation
	Custom vector spaces
	Standard form linear and semidefinite programming

	Feedback and support
	Acknowledgments
	Appendix: dual functions
	Appendix: proximity function identities
	Appendix: list of TFOCS functions
	References

