diff --git a/src/array_api_stubs/_2022_12/linear_algebra_functions.py b/src/array_api_stubs/_2022_12/linear_algebra_functions.py index 110a19ce1..d5329db76 100644 --- a/src/array_api_stubs/_2022_12/linear_algebra_functions.py +++ b/src/array_api_stubs/_2022_12/linear_algebra_functions.py @@ -122,9 +122,9 @@ def vecdot(x1: array, x2: array, /, *, axis: int = -1) -> array: Let :math:`\mathbf{a}` be a vector in ``x1`` and :math:`\mathbf{b}` be a corresponding vector in ``x2``. The dot product is defined as .. math:: - \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{n-1} a_i\overline{b_i} + \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{n-1} \overline{a_i}b_i - over the dimension specified by ``axis`` and where :math:`n` is the dimension size and :math:`\overline{b_i}` denotes the complex conjugate if :math:`b_i` is complex and the identity if :math:`b_i` is real-valued. + over the dimension specified by ``axis`` and where :math:`n` is the dimension size and :math:`\overline{a_i}` denotes the complex conjugate if :math:`a_i` is complex and the identity if :math:`a_i` is real-valued. Parameters ---------- diff --git a/src/array_api_stubs/_draft/linear_algebra_functions.py b/src/array_api_stubs/_draft/linear_algebra_functions.py index 079a90ee6..96f082bd5 100644 --- a/src/array_api_stubs/_draft/linear_algebra_functions.py +++ b/src/array_api_stubs/_draft/linear_algebra_functions.py @@ -126,9 +126,9 @@ def vecdot(x1: array, x2: array, /, *, axis: int = -1) -> array: Let :math:`\mathbf{a}` be a vector in ``x1`` and :math:`\mathbf{b}` be a corresponding vector in ``x2``. The dot product is defined as .. math:: - \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{n-1} a_i\overline{b_i} + \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{n-1} \overline{a_i}b_i - over the dimension specified by ``axis`` and where :math:`n` is the dimension size and :math:`\overline{b_i}` denotes the complex conjugate if :math:`b_i` is complex and the identity if :math:`b_i` is real-valued. + over the dimension specified by ``axis`` and where :math:`n` is the dimension size and :math:`\overline{a_i}` denotes the complex conjugate if :math:`a_i` is complex and the identity if :math:`a_i` is real-valued. Parameters ----------