-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodule.py
38 lines (32 loc) · 1.27 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from typing import Iterable
from torch.nn import Module
def get_parameters(modules: Iterable[Module]):
"""
Given a list of torch modules, returns a list of their parameters.
:param modules: iterable of modules
:returns: a list of parameters
"""
model_parameters = []
for module in modules:
model_parameters += list(module.parameters())
return model_parameters
class FreezeParameters:
def __init__(self, modules: Iterable[Module]):
"""
Context manager to locally freeze gradients.
In some cases with can speed up computation because gradients aren't calculated for these listed modules.
example:
```
with FreezeParameters([module]):
output_tensor = module(input_tensor)
```
:param modules: iterable of modules. used to call .parameters() to freeze gradients.
"""
self.modules = modules
self.param_states = [p.requires_grad for p in get_parameters(self.modules)]
def __enter__(self):
for param in get_parameters(self.modules):
param.requires_grad = False
def __exit__(self, exc_type, exc_val, exc_tb):
for i, param in enumerate(get_parameters(self.modules)):
param.requires_grad = self.param_states[i]