Skip to content

Commit 115cc22

Browse files
authored
Fibonacci: restore matrix power form
Maybe a dotted line would show the matrix [[F2, F1],[F1,F0]] can be viewed as two column vectors. Using only the matrix power saves one matrix-vector multiply.
1 parent 8c5bc69 commit 115cc22

File tree

1 file changed

+13
-1
lines changed

1 file changed

+13
-1
lines changed

src/algebra/fibonacci-numbers.md

Lines changed: 13 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,19 @@ F_{n}
157157
\end{pmatrix}
158158
$$
159159
160-
where $F_1 = 1, F_0 = 0$.
160+
where $F_1 = 1, F_0 = 0$.
161+
In fact, since
162+
$$
163+
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
164+
= \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix}
165+
$$
166+
167+
we can use the matrix directly:
168+
169+
$$
170+
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n
171+
= \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}
172+
$$
161173
162174
Thus, in order to find $F_n$ in $O(\log n)$ time, we must raise the matrix to n. (See [Binary exponentiation](binary-exp.md))
163175

0 commit comments

Comments
 (0)