-
-
Notifications
You must be signed in to change notification settings - Fork 32.2k
/
Copy pathgeometries.py
869 lines (724 loc) · 28.1 KB
/
geometries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
"""
The OGRGeometry is a wrapper for using the OGR Geometry class
(see https://gdal.org/api/ogrgeometry_cpp.html#_CPPv411OGRGeometry).
OGRGeometry may be instantiated when reading geometries from OGR Data Sources
(e.g. SHP files), or when given OGC WKT (a string).
While the 'full' API is not present yet, the API is "pythonic" unlike
the traditional and "next-generation" OGR Python bindings. One major
advantage OGR Geometries have over their GEOS counterparts is support
for spatial reference systems and their transformation.
Example:
>>> from django.contrib.gis.gdal import OGRGeometry, OGRGeomType, SpatialReference
>>> wkt1, wkt2 = 'POINT(-90 30)', 'POLYGON((0 0, 5 0, 5 5, 0 5)'
>>> pnt = OGRGeometry(wkt1)
>>> print(pnt)
POINT (-90 30)
>>> mpnt = OGRGeometry(OGRGeomType('MultiPoint'), SpatialReference('WGS84'))
>>> mpnt.add(wkt1)
>>> mpnt.add(wkt1)
>>> print(mpnt)
MULTIPOINT (-90 30,-90 30)
>>> print(mpnt.srs.name)
WGS 84
>>> print(mpnt.srs.proj)
+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
>>> mpnt.transform(SpatialReference('NAD27'))
>>> print(mpnt.proj)
+proj=longlat +ellps=clrk66 +datum=NAD27 +no_defs
>>> print(mpnt)
MULTIPOINT (-89.99993037860248 29.99979788655764,-89.99993037860248 29.99979788655764)
The OGRGeomType class is to make it easy to specify an OGR geometry type:
>>> from django.contrib.gis.gdal import OGRGeomType
>>> gt1 = OGRGeomType(3) # Using an integer for the type
>>> gt2 = OGRGeomType('Polygon') # Using a string
>>> gt3 = OGRGeomType('POLYGON') # It's case-insensitive
>>> print(gt1 == 3, gt1 == 'Polygon') # Equivalence works w/non-OGRGeomType objects
True True
"""
import sys
from binascii import b2a_hex
from ctypes import byref, c_char_p, c_double, c_ubyte, c_void_p, string_at
from django.contrib.gis.gdal.base import GDALBase
from django.contrib.gis.gdal.envelope import Envelope, OGREnvelope
from django.contrib.gis.gdal.error import GDALException, SRSException
from django.contrib.gis.gdal.geomtype import OGRGeomType
from django.contrib.gis.gdal.prototypes import geom as capi
from django.contrib.gis.gdal.prototypes import srs as srs_api
from django.contrib.gis.gdal.srs import CoordTransform, SpatialReference
from django.contrib.gis.geometry import hex_regex, json_regex, wkt_regex
from django.utils.encoding import force_bytes
# For more information, see the OGR C API source code:
# https://gdal.org/api/vector_c_api.html
#
# The OGR_G_* routines are relevant here.
class OGRGeometry(GDALBase):
"""Encapsulate an OGR geometry."""
destructor = capi.destroy_geom
geos_support = True
def __init__(self, geom_input, srs=None):
"""Initialize Geometry on either WKT or an OGR pointer as input."""
str_instance = isinstance(geom_input, str)
# If HEX, unpack input to a binary buffer.
if str_instance and hex_regex.match(geom_input):
geom_input = memoryview(bytes.fromhex(geom_input))
str_instance = False
# Constructing the geometry,
if str_instance:
wkt_m = wkt_regex.match(geom_input)
json_m = json_regex.match(geom_input)
if wkt_m:
if wkt_m["srid"]:
# If there's EWKT, set the SRS w/value of the SRID.
srs = int(wkt_m["srid"])
if wkt_m["type"].upper() == "LINEARRING":
# OGR_G_CreateFromWkt doesn't work with LINEARRING WKT.
# See https://trac.osgeo.org/gdal/ticket/1992.
g = capi.create_geom(OGRGeomType(wkt_m["type"]).num)
capi.import_wkt(g, byref(c_char_p(wkt_m["wkt"].encode())))
else:
g = capi.from_wkt(
byref(c_char_p(wkt_m["wkt"].encode())), None, byref(c_void_p())
)
elif json_m:
g = self._from_json(geom_input.encode())
else:
# Seeing if the input is a valid short-hand string
# (e.g., 'Point', 'POLYGON').
OGRGeomType(geom_input)
g = capi.create_geom(OGRGeomType(geom_input).num)
elif isinstance(geom_input, memoryview):
# WKB was passed in
g = self._from_wkb(geom_input)
elif isinstance(geom_input, OGRGeomType):
# OGRGeomType was passed in, an empty geometry will be created.
g = capi.create_geom(geom_input.num)
elif isinstance(geom_input, self.ptr_type):
# OGR pointer (c_void_p) was the input.
g = geom_input
else:
raise GDALException(
"Invalid input type for OGR Geometry construction: %s"
% type(geom_input)
)
# Now checking the Geometry pointer before finishing initialization
# by setting the pointer for the object.
if not g:
raise GDALException(
"Cannot create OGR Geometry from input: %s" % geom_input
)
self.ptr = g
# Assigning the SpatialReference object to the geometry, if valid.
if srs:
self.srs = srs
# Setting the class depending upon the OGR Geometry Type
if (geo_class := GEO_CLASSES.get(self.geom_type.num)) is None:
raise TypeError(f"Unsupported geometry type: {self.geom_type}")
self.__class__ = geo_class
# Pickle routines
def __getstate__(self):
srs = self.srs
if srs:
srs = srs.wkt
else:
srs = None
return bytes(self.wkb), srs
def __setstate__(self, state):
wkb, srs = state
ptr = capi.from_wkb(wkb, None, byref(c_void_p()), len(wkb))
if not ptr:
raise GDALException("Invalid OGRGeometry loaded from pickled state.")
self.ptr = ptr
self.srs = srs
@classmethod
def _from_wkb(cls, geom_input):
return capi.from_wkb(
bytes(geom_input), None, byref(c_void_p()), len(geom_input)
)
@staticmethod
def _from_json(geom_input):
return capi.from_json(geom_input)
@classmethod
def from_bbox(cls, bbox):
"Construct a Polygon from a bounding box (4-tuple)."
x0, y0, x1, y1 = bbox
return OGRGeometry(
"POLYGON((%s %s, %s %s, %s %s, %s %s, %s %s))"
% (x0, y0, x0, y1, x1, y1, x1, y0, x0, y0)
)
@staticmethod
def from_json(geom_input):
return OGRGeometry(OGRGeometry._from_json(force_bytes(geom_input)))
@classmethod
def from_gml(cls, gml_string):
return cls(capi.from_gml(force_bytes(gml_string)))
# ### Geometry set-like operations ###
# g = g1 | g2
def __or__(self, other):
"Return the union of the two geometries."
return self.union(other)
# g = g1 & g2
def __and__(self, other):
"Return the intersection of this Geometry and the other."
return self.intersection(other)
# g = g1 - g2
def __sub__(self, other):
"Return the difference this Geometry and the other."
return self.difference(other)
# g = g1 ^ g2
def __xor__(self, other):
"Return the symmetric difference of this Geometry and the other."
return self.sym_difference(other)
def __eq__(self, other):
"Is this Geometry equal to the other?"
return isinstance(other, OGRGeometry) and self.equals(other)
def __str__(self):
"WKT is used for the string representation."
return self.wkt
# #### Geometry Properties ####
@property
def dimension(self):
"Return 0 for points, 1 for lines, and 2 for surfaces."
return capi.get_dims(self.ptr)
@property
def coord_dim(self):
"Return the coordinate dimension of the Geometry."
return capi.get_coord_dim(self.ptr)
@property
def geom_count(self):
"Return the number of elements in this Geometry."
return capi.get_geom_count(self.ptr)
@property
def point_count(self):
"Return the number of Points in this Geometry."
return capi.get_point_count(self.ptr)
@property
def num_points(self):
"Alias for `point_count` (same name method in GEOS API.)"
return self.point_count
@property
def num_coords(self):
"Alias for `point_count`."
return self.point_count
@property
def geom_type(self):
"Return the Type for this Geometry."
return OGRGeomType(capi.get_geom_type(self.ptr))
@property
def geom_name(self):
"Return the Name of this Geometry."
return capi.get_geom_name(self.ptr)
@property
def area(self):
"Return the area for a LinearRing, Polygon, or MultiPolygon; 0 otherwise."
return capi.get_area(self.ptr)
@property
def envelope(self):
"Return the envelope for this Geometry."
# TODO: Fix Envelope() for Point geometries.
return Envelope(capi.get_envelope(self.ptr, byref(OGREnvelope())))
@property
def empty(self):
return capi.is_empty(self.ptr)
@property
def extent(self):
"Return the envelope as a 4-tuple, instead of as an Envelope object."
return self.envelope.tuple
@property
def is_3d(self):
"""Return True if the geometry has Z coordinates."""
return capi.is_3d(self.ptr)
def set_3d(self, value):
"""Set if this geometry has Z coordinates."""
if value is True:
capi.set_3d(self.ptr, 1)
elif value is False:
capi.set_3d(self.ptr, 0)
else:
raise ValueError(f"Input to 'set_3d' must be a boolean, got '{value!r}'.")
@property
def is_measured(self):
"""Return True if the geometry has M coordinates."""
return capi.is_measured(self.ptr)
def set_measured(self, value):
"""Set if this geometry has M coordinates."""
if value is True:
capi.set_measured(self.ptr, 1)
elif value is False:
capi.set_measured(self.ptr, 0)
else:
raise ValueError(
f"Input to 'set_measured' must be a boolean, got '{value!r}'."
)
@property
def has_curve(self):
"""Return True if the geometry is or has curve geometry."""
return capi.has_curve_geom(self.ptr, 0)
def get_linear_geometry(self):
"""Return a linear version of this geometry."""
return OGRGeometry(capi.get_linear_geom(self.ptr, 0, None))
def get_curve_geometry(self):
"""Return a curve version of this geometry."""
return OGRGeometry(capi.get_curve_geom(self.ptr, None))
# #### SpatialReference-related Properties ####
# The SRS property
def _get_srs(self):
"Return the Spatial Reference for this Geometry."
try:
srs_ptr = capi.get_geom_srs(self.ptr)
return SpatialReference(srs_api.clone_srs(srs_ptr))
except SRSException:
return None
def _set_srs(self, srs):
"Set the SpatialReference for this geometry."
# Do not have to clone the `SpatialReference` object pointer because
# when it is assigned to this `OGRGeometry` it's internal OGR
# reference count is incremented, and will likewise be released
# (decremented) when this geometry's destructor is called.
if isinstance(srs, SpatialReference):
srs_ptr = srs.ptr
elif isinstance(srs, (int, str)):
sr = SpatialReference(srs)
srs_ptr = sr.ptr
elif srs is None:
srs_ptr = None
else:
raise TypeError(
"Cannot assign spatial reference with object of type: %s" % type(srs)
)
capi.assign_srs(self.ptr, srs_ptr)
srs = property(_get_srs, _set_srs)
# The SRID property
def _get_srid(self):
srs = self.srs
if srs:
return srs.srid
return None
def _set_srid(self, srid):
if isinstance(srid, int) or srid is None:
self.srs = srid
else:
raise TypeError("SRID must be set with an integer.")
srid = property(_get_srid, _set_srid)
# #### Output Methods ####
def _geos_ptr(self):
from django.contrib.gis.geos import GEOSGeometry
return GEOSGeometry._from_wkb(self.wkb)
@property
def geos(self):
"Return a GEOSGeometry object from this OGRGeometry."
if self.geos_support:
from django.contrib.gis.geos import GEOSGeometry
return GEOSGeometry(self._geos_ptr(), self.srid)
else:
from django.contrib.gis.geos import GEOSException
raise GEOSException(f"GEOS does not support {self.__class__.__qualname__}.")
@property
def gml(self):
"Return the GML representation of the Geometry."
return capi.to_gml(self.ptr)
@property
def hex(self):
"Return the hexadecimal representation of the WKB (a string)."
return b2a_hex(self.wkb).upper()
@property
def json(self):
"""
Return the GeoJSON representation of this Geometry.
"""
return capi.to_json(self.ptr)
geojson = json
@property
def kml(self):
"Return the KML representation of the Geometry."
return capi.to_kml(self.ptr, None)
@property
def wkb_size(self):
"Return the size of the WKB buffer."
return capi.get_wkbsize(self.ptr)
@property
def wkb(self):
"Return the WKB representation of the Geometry."
if sys.byteorder == "little":
byteorder = 1 # wkbNDR (from ogr_core.h)
else:
byteorder = 0 # wkbXDR
sz = self.wkb_size
# Creating the unsigned character buffer, and passing it in by reference.
buf = (c_ubyte * sz)()
# For backward compatibility, export old-style 99-402 extended
# dimension types when geometry does not have an M dimension.
# https://gdal.org/api/vector_c_api.html#_CPPv417OGR_G_ExportToWkb12OGRGeometryH15OGRwkbByteOrderPh
to_wkb = capi.to_iso_wkb if self.is_measured else capi.to_wkb
to_wkb(self.ptr, byteorder, byref(buf))
# Returning a buffer of the string at the pointer.
return memoryview(string_at(buf, sz))
@property
def wkt(self):
"Return the WKT representation of the Geometry."
# For backward compatibility, export old-style 99-402 extended
# dimension types when geometry does not have an M dimension.
# https://gdal.org/api/vector_c_api.html#_CPPv417OGR_G_ExportToWkt12OGRGeometryHPPc
to_wkt = capi.to_iso_wkt if self.is_measured else capi.to_wkt
return to_wkt(self.ptr, byref(c_char_p()))
@property
def ewkt(self):
"Return the EWKT representation of the Geometry."
srs = self.srs
if srs and srs.srid:
return "SRID=%s;%s" % (srs.srid, self.wkt)
else:
return self.wkt
# #### Geometry Methods ####
def clone(self):
"Clone this OGR Geometry."
return OGRGeometry(capi.clone_geom(self.ptr), self.srs)
def close_rings(self):
"""
If there are any rings within this geometry that have not been
closed, this routine will do so by adding the starting point at the
end.
"""
# Closing the open rings.
capi.geom_close_rings(self.ptr)
def transform(self, coord_trans, clone=False):
"""
Transform this geometry to a different spatial reference system.
May take a CoordTransform object, a SpatialReference object, string
WKT or PROJ, and/or an integer SRID. By default, return nothing
and transform the geometry in-place. However, if the `clone` keyword is
set, return a transformed clone of this geometry.
"""
if clone:
klone = self.clone()
klone.transform(coord_trans)
return klone
# Depending on the input type, use the appropriate OGR routine
# to perform the transformation.
if isinstance(coord_trans, CoordTransform):
capi.geom_transform(self.ptr, coord_trans.ptr)
elif isinstance(coord_trans, SpatialReference):
capi.geom_transform_to(self.ptr, coord_trans.ptr)
elif isinstance(coord_trans, (int, str)):
sr = SpatialReference(coord_trans)
capi.geom_transform_to(self.ptr, sr.ptr)
else:
raise TypeError(
"Transform only accepts CoordTransform, "
"SpatialReference, string, and integer objects."
)
# #### Topology Methods ####
def _topology(self, func, other):
"""A generalized function for topology operations, takes a GDAL function and
the other geometry to perform the operation on."""
if not isinstance(other, OGRGeometry):
raise TypeError(
"Must use another OGRGeometry object for topology operations!"
)
# Returning the output of the given function with the other geometry's
# pointer.
return func(self.ptr, other.ptr)
def intersects(self, other):
"Return True if this geometry intersects with the other."
return self._topology(capi.ogr_intersects, other)
def equals(self, other):
"Return True if this geometry is equivalent to the other."
return self._topology(capi.ogr_equals, other)
def disjoint(self, other):
"Return True if this geometry and the other are spatially disjoint."
return self._topology(capi.ogr_disjoint, other)
def touches(self, other):
"Return True if this geometry touches the other."
return self._topology(capi.ogr_touches, other)
def crosses(self, other):
"Return True if this geometry crosses the other."
return self._topology(capi.ogr_crosses, other)
def within(self, other):
"Return True if this geometry is within the other."
return self._topology(capi.ogr_within, other)
def contains(self, other):
"Return True if this geometry contains the other."
return self._topology(capi.ogr_contains, other)
def overlaps(self, other):
"Return True if this geometry overlaps the other."
return self._topology(capi.ogr_overlaps, other)
# #### Geometry-generation Methods ####
def _geomgen(self, gen_func, other=None):
"A helper routine for the OGR routines that generate geometries."
if isinstance(other, OGRGeometry):
return OGRGeometry(gen_func(self.ptr, other.ptr), self.srs)
else:
return OGRGeometry(gen_func(self.ptr), self.srs)
@property
def boundary(self):
"Return the boundary of this geometry."
return self._geomgen(capi.get_boundary)
@property
def convex_hull(self):
"""
Return the smallest convex Polygon that contains all the points in
this Geometry.
"""
return self._geomgen(capi.geom_convex_hull)
def difference(self, other):
"""
Return a new geometry consisting of the region which is the difference
of this geometry and the other.
"""
return self._geomgen(capi.geom_diff, other)
def intersection(self, other):
"""
Return a new geometry consisting of the region of intersection of this
geometry and the other.
"""
return self._geomgen(capi.geom_intersection, other)
def sym_difference(self, other):
"""
Return a new geometry which is the symmetric difference of this
geometry and the other.
"""
return self._geomgen(capi.geom_sym_diff, other)
def union(self, other):
"""
Return a new geometry consisting of the region which is the union of
this geometry and the other.
"""
return self._geomgen(capi.geom_union, other)
@property
def centroid(self):
"""Return the centroid (a Point) of this Polygon."""
# The centroid is a Point, create a geometry for this.
p = OGRGeometry(OGRGeomType("Point"))
capi.get_centroid(self.ptr, p.ptr)
return p
# The subclasses for OGR Geometry.
class Point(OGRGeometry):
def _geos_ptr(self):
from django.contrib.gis import geos
return geos.Point._create_empty() if self.empty else super()._geos_ptr()
@classmethod
def _create_empty(cls):
return capi.create_geom(OGRGeomType("point").num)
@property
def x(self):
"Return the X coordinate for this Point."
return capi.getx(self.ptr, 0)
@property
def y(self):
"Return the Y coordinate for this Point."
return capi.gety(self.ptr, 0)
@property
def z(self):
"Return the Z coordinate for this Point."
if self.is_3d:
return capi.getz(self.ptr, 0)
@property
def m(self):
"""Return the M coordinate for this Point."""
if self.is_measured:
return capi.getm(self.ptr, 0)
@property
def tuple(self):
"Return the tuple of this point."
if self.is_3d and self.is_measured:
return self.x, self.y, self.z, self.m
if self.is_3d:
return self.x, self.y, self.z
if self.is_measured:
return self.x, self.y, self.m
return self.x, self.y
coords = tuple
class LineString(OGRGeometry):
def __getitem__(self, index):
"Return the Point at the given index."
if 0 <= index < self.point_count:
x, y, z, m = c_double(), c_double(), c_double(), c_double()
capi.get_point(self.ptr, index, byref(x), byref(y), byref(z), byref(m))
if self.is_3d and self.is_measured:
return x.value, y.value, z.value, m.value
if self.is_3d:
return x.value, y.value, z.value
if self.is_measured:
return x.value, y.value, m.value
dim = self.coord_dim
if dim == 1:
return (x.value,)
elif dim == 2:
return (x.value, y.value)
else:
raise IndexError(
"Index out of range when accessing points of a line string: %s." % index
)
def __len__(self):
"Return the number of points in the LineString."
return self.point_count
@property
def tuple(self):
"Return the tuple representation of this LineString."
return tuple(self[i] for i in range(len(self)))
coords = tuple
def _listarr(self, func):
"""
Internal routine that returns a sequence (list) corresponding with
the given function.
"""
return [func(self.ptr, i) for i in range(len(self))]
@property
def x(self):
"Return the X coordinates in a list."
return self._listarr(capi.getx)
@property
def y(self):
"Return the Y coordinates in a list."
return self._listarr(capi.gety)
@property
def z(self):
"Return the Z coordinates in a list."
if self.is_3d:
return self._listarr(capi.getz)
@property
def m(self):
"""Return the M coordinates in a list."""
if self.is_measured:
return self._listarr(capi.getm)
# LinearRings are used in Polygons.
class LinearRing(LineString):
pass
class Polygon(OGRGeometry):
def __len__(self):
"Return the number of interior rings in this Polygon."
return self.geom_count
def __getitem__(self, index):
"Get the ring at the specified index."
if 0 <= index < self.geom_count:
return OGRGeometry(
capi.clone_geom(capi.get_geom_ref(self.ptr, index)), self.srs
)
else:
raise IndexError(
"Index out of range when accessing rings of a polygon: %s." % index
)
# Polygon Properties
@property
def shell(self):
"Return the shell of this Polygon."
return self[0] # First ring is the shell
exterior_ring = shell
@property
def tuple(self):
"Return a tuple of LinearRing coordinate tuples."
return tuple(self[i].tuple for i in range(self.geom_count))
coords = tuple
@property
def point_count(self):
"Return the number of Points in this Polygon."
# Summing up the number of points in each ring of the Polygon.
return sum(self[i].point_count for i in range(self.geom_count))
class CircularString(LineString):
geos_support = False
class CurvePolygon(Polygon):
geos_support = False
class CompoundCurve(OGRGeometry):
geos_support = False
# Geometry Collection base class.
class GeometryCollection(OGRGeometry):
"The Geometry Collection class."
def __getitem__(self, index):
"Get the Geometry at the specified index."
if 0 <= index < self.geom_count:
return OGRGeometry(
capi.clone_geom(capi.get_geom_ref(self.ptr, index)), self.srs
)
else:
raise IndexError(
"Index out of range when accessing geometry in a collection: %s."
% index
)
def __len__(self):
"Return the number of geometries in this Geometry Collection."
return self.geom_count
def add(self, geom):
"Add the geometry to this Geometry Collection."
if isinstance(geom, OGRGeometry):
if isinstance(geom, self.__class__):
for g in geom:
capi.add_geom(self.ptr, g.ptr)
else:
capi.add_geom(self.ptr, geom.ptr)
elif isinstance(geom, str):
tmp = OGRGeometry(geom)
capi.add_geom(self.ptr, tmp.ptr)
else:
raise GDALException("Must add an OGRGeometry.")
@property
def point_count(self):
"Return the number of Points in this Geometry Collection."
# Summing up the number of points in each geometry in this collection
return sum(self[i].point_count for i in range(self.geom_count))
@property
def tuple(self):
"Return a tuple representation of this Geometry Collection."
return tuple(self[i].tuple for i in range(self.geom_count))
coords = tuple
# Multiple Geometry types.
class MultiPoint(GeometryCollection):
pass
class MultiLineString(GeometryCollection):
pass
class MultiPolygon(GeometryCollection):
pass
class MultiSurface(GeometryCollection):
geos_support = False
class MultiCurve(GeometryCollection):
geos_support = False
# Class mapping dictionary (using the OGRwkbGeometryType as the key)
GEO_CLASSES = {
1: Point,
2: LineString,
3: Polygon,
4: MultiPoint,
5: MultiLineString,
6: MultiPolygon,
7: GeometryCollection,
8: CircularString,
9: CompoundCurve,
10: CurvePolygon,
11: MultiCurve,
12: MultiSurface,
101: LinearRing,
1008: CircularString, # CIRCULARSTRING Z
1009: CompoundCurve, # COMPOUNDCURVE Z
1010: CurvePolygon, # CURVEPOLYGON Z
1011: MultiCurve, # MULTICURVE Z
1012: MultiSurface, # MULTICURVE Z
2001: Point, # POINT M
2002: LineString, # LINESTRING M
2003: Polygon, # POLYGON M
2004: MultiPoint, # MULTIPOINT M
2005: MultiLineString, # MULTILINESTRING M
2006: MultiPolygon, # MULTIPOLYGON M
2007: GeometryCollection, # GEOMETRYCOLLECTION M
2008: CircularString, # CIRCULARSTRING M
2009: CompoundCurve, # COMPOUNDCURVE M
2010: CurvePolygon, # CURVEPOLYGON M
2011: MultiCurve, # MULTICURVE M
2012: MultiSurface, # MULTICURVE M
3001: Point, # POINT ZM
3002: LineString, # LINESTRING ZM
3003: Polygon, # POLYGON ZM
3004: MultiPoint, # MULTIPOINT ZM
3005: MultiLineString, # MULTILINESTRING ZM
3006: MultiPolygon, # MULTIPOLYGON ZM
3007: GeometryCollection, # GEOMETRYCOLLECTION ZM
3008: CircularString, # CIRCULARSTRING ZM
3009: CompoundCurve, # COMPOUNDCURVE ZM
3010: CurvePolygon, # CURVEPOLYGON ZM
3011: MultiCurve, # MULTICURVE ZM
3012: MultiSurface, # MULTISURFACE ZM
1 + OGRGeomType.wkb25bit: Point, # POINT Z
2 + OGRGeomType.wkb25bit: LineString, # LINESTRING Z
3 + OGRGeomType.wkb25bit: Polygon, # POLYGON Z
4 + OGRGeomType.wkb25bit: MultiPoint, # MULTIPOINT Z
5 + OGRGeomType.wkb25bit: MultiLineString, # MULTILINESTRING Z
6 + OGRGeomType.wkb25bit: MultiPolygon, # MULTIPOLYGON Z
7 + OGRGeomType.wkb25bit: GeometryCollection, # GEOMETRYCOLLECTION Z
}