-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathReachTargetRLAgent.py
378 lines (311 loc) · 14.6 KB
/
ReachTargetRLAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# Import Absolutes deps
import torch.nn as nn
import torch as T
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
from torch.utils import data
from rlbench.backend.observation import Observation
from typing import List
import numpy as np
# Import Relative deps
import sys
sys.path.append('..')
from models.Agent import TorchRLAgent
import logger
from models.CupboardAgents.DDPG.ddpg import DDPGArgs
class OUActionNoise(object):
def __init__(self, mu, sigma=0.15, theta=.2, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
class ReplayBuffer(object):
def __init__(self, max_size, input_shape, n_actions):
self.mem_size = max_size
self.mem_cntr = 0
self.state_memory = np.zeros((self.mem_size, *input_shape))
self.new_state_memory = np.zeros((self.mem_size, *input_shape))
self.action_memory = np.zeros((self.mem_size, n_actions))
self.reward_memory = np.zeros(self.mem_size)
self.terminal_memory = np.zeros(self.mem_size, dtype=np.float32)
def store_transition(self, state, action, reward, state_, done):
index = self.mem_cntr % self.mem_size
self.state_memory[index] = state
self.new_state_memory[index] = state_
self.action_memory[index] = action
self.reward_memory[index] = reward
self.terminal_memory[index] = 1 - done
self.mem_cntr += 1
def sample_buffer(self, batch_size):
max_mem = min(self.mem_cntr, self.mem_size)
batch = np.random.choice(max_mem, batch_size)
states = self.state_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
states_ = self.new_state_memory[batch]
terminal = self.terminal_memory[batch]
return states, actions, rewards, states_, terminal
class CriticNetwork(nn.Module):
def __init__(self, beta, input_dims, fc1_dims, fc2_dims, n_actions, name):
super(CriticNetwork, self).__init__()
self.input_dims = input_dims
self.fc1_dims = fc1_dims
self.fc2_dims = fc2_dims
self.n_actions = n_actions
self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
T.nn.init.uniform_(self.fc1.weight.data, -f1, f1)
T.nn.init.uniform_(self.fc1.bias.data, -f1, f1)
#self.fc1.weight.data.uniform_(-f1, f1)
#self.fc1.bias.data.uniform_(-f1, f1)
self.bn1 = nn.LayerNorm(self.fc1_dims)
self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
#f2 = 0.002
T.nn.init.uniform_(self.fc2.weight.data, -f2, f2)
T.nn.init.uniform_(self.fc2.bias.data, -f2, f2)
#self.fc2.weight.data.uniform_(-f2, f2)
#self.fc2.bias.data.uniform_(-f2, f2)
self.bn2 = nn.LayerNorm(self.fc2_dims)
self.action_value = nn.Linear(self.n_actions, self.fc2_dims)
f3 = 0.003
self.q = nn.Linear(self.fc2_dims, 1)
T.nn.init.uniform_(self.q.weight.data, -f3, f3)
T.nn.init.uniform_(self.q.bias.data, -f3, f3)
#self.q.weight.data.uniform_(-f3, f3)
#self.q.bias.data.uniform_(-f3, f3)
self.optimizer = optim.Adam(self.parameters(), lr=beta)
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self, state, action):
state_value = self.fc1(state)
state_value = self.bn1(state_value)
state_value = F.relu(state_value)
state_value = self.fc2(state_value)
state_value = self.bn2(state_value)
action_value = F.relu(self.action_value(action))
state_action_value = F.relu(T.add(state_value, action_value))
state_action_value = self.q(state_action_value)
return state_action_value
class ActorNetwork(nn.Module):
def __init__(self, alpha, input_dims, fc1_dims, fc2_dims, n_actions, name):
super(ActorNetwork, self).__init__()
self.input_dims = input_dims
self.fc1_dims = fc1_dims
self.fc2_dims = fc2_dims
self.n_actions = n_actions
self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
T.nn.init.uniform_(self.fc1.weight.data, -f1, f1)
T.nn.init.uniform_(self.fc1.bias.data, -f1, f1)
#self.fc1.weight.data.uniform_(-f1, f1)
#self.fc1.bias.data.uniform_(-f1, f1)
self.bn1 = nn.LayerNorm(self.fc1_dims)
self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
#f2 = 0.002
f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
T.nn.init.uniform_(self.fc2.weight.data, -f2, f2)
T.nn.init.uniform_(self.fc2.bias.data, -f2, f2)
#self.fc2.weight.data.uniform_(-f2, f2)
#self.fc2.bias.data.uniform_(-f2, f2)
self.bn2 = nn.LayerNorm(self.fc2_dims)
#f3 = 0.004
f3 = 0.003
self.mu = nn.Linear(self.fc2_dims, self.n_actions)
T.nn.init.uniform_(self.mu.weight.data, -f3, f3)
T.nn.init.uniform_(self.mu.bias.data, -f3, f3)
#self.mu.weight.data.uniform_(-f3, f3)
#self.mu.bias.data.uniform_(-f3, f3)
self.optimizer = optim.Adam(self.parameters(), lr=alpha)
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self, state):
x = self.fc1(state)
x = self.bn1(x)
x = F.relu(x)
x = self.fc2(x)
x = self.bn2(x)
x = F.relu(x)
x = T.tanh(self.mu(x))
return x
class DDPG(object):
def __init__(self,arguements=DDPGArgs(),input_dims=[13],n_actions=8):
self.gamma = arguements.discount
self.tau = arguements.tau
self.memory = ReplayBuffer(arguements.rmsize, input_dims, n_actions)
self.batch_size = arguements.bsize
self.actor = ActorNetwork(arguements.prate, input_dims, arguements.hidden1,
arguements.hidden2, n_actions=n_actions,
name='Actor')
self.critic = CriticNetwork(arguements.rate, input_dims, arguements.hidden1,
arguements.hidden2, n_actions=n_actions,
name='Critic')
self.target_actor = ActorNetwork(arguements.prate, input_dims, arguements.hidden1,
arguements.hidden2, n_actions=n_actions,
name='TargetActor')
self.target_critic = CriticNetwork(arguements.rate, input_dims, arguements.hidden1,
arguements.hidden2, n_actions=n_actions,
name='TargetCritic')
self.noise = OUActionNoise(mu=np.zeros(n_actions), sigma=arguements.ou_sigma, theta=arguements.ou_theta)
self.update_network_parameters(tau=1)
def to_object(self):
networks = {
'target':{
'actor':self.target_actor.state_dict(),
'critic':self.target_critic.state_dict()
},
'pred':{
'actor':self.actor.state_dict(),
'critic':self.critic.state_dict()
}
}
return networks
def from_object(self,nw_object):
if 'target' not in nw_object or 'pred' not in nw_object:
raise Exception("No Target Or Prediction Network as Properties")
self.target_actor.load_state_dict(nw_object['target']['actor'])
self.target_critic.load_state_dict(nw_object['target']['critic'])
self.actor.load_state_dict(nw_object['pred']['actor'])
self.critic.load_state_dict(nw_object['pred']['critic'])
print("Model Loaded!")
def select_action(self, observation):
self.actor.eval()
observation = T.tensor(observation, dtype=T.float).to(self.actor.device)
mu = self.actor.forward(observation).to(self.actor.device)
mu_prime = mu + T.tensor(self.noise(),
dtype=T.float).to(self.actor.device)
self.actor.train()
#print(mu_prime.cpu().detach().numpy()[0])
return mu_prime.cpu().detach().numpy()[0]
def observe(self, state, action, reward, new_state, done):
self.memory.store_transition(state, action, reward, new_state, done)
def update_policy(self):
if self.memory.mem_cntr < self.batch_size:
return
state, action, reward, new_state, done = \
self.memory.sample_buffer(self.batch_size)
reward = T.tensor(reward, dtype=T.float).to(self.critic.device)
done = T.tensor(done).to(self.critic.device)
new_state = T.tensor(new_state, dtype=T.float).to(self.critic.device)
action = T.tensor(action, dtype=T.float).to(self.critic.device)
state = T.tensor(state, dtype=T.float).to(self.critic.device)
self.target_actor.eval()
self.target_critic.eval()
self.critic.eval()
target_actions = self.target_actor.forward(new_state)
critic_value_ = self.target_critic.forward(new_state, target_actions)
critic_value = self.critic.forward(state, action)
target = []
for j in range(self.batch_size):
target.append(reward[j] + self.gamma*critic_value_[j]*done[j])
target = T.tensor(target).to(self.critic.device)
target = target.view(self.batch_size, 1)
self.critic.train()
self.critic.optimizer.zero_grad()
critic_loss = F.mse_loss(target, critic_value)
critic_loss.backward()
self.critic.optimizer.step()
self.critic.eval()
self.actor.optimizer.zero_grad()
mu = self.actor.forward(state)
self.actor.train()
actor_loss = -self.critic.forward(state, mu)
actor_loss = T.mean(actor_loss)
actor_loss.backward()
self.actor.optimizer.step()
self.update_network_parameters()
def update_network_parameters(self, tau=None):
if tau is None:
tau = self.tau
actor_params = self.actor.named_parameters()
critic_params = self.critic.named_parameters()
target_actor_params = self.target_actor.named_parameters()
target_critic_params = self.target_critic.named_parameters()
critic_state_dict = dict(critic_params)
actor_state_dict = dict(actor_params)
target_critic_dict = dict(target_critic_params)
target_actor_dict = dict(target_actor_params)
for name in critic_state_dict:
critic_state_dict[name] = tau*critic_state_dict[name].clone() + \
(1-tau)*target_critic_dict[name].clone()
self.target_critic.load_state_dict(critic_state_dict)
for name in actor_state_dict:
actor_state_dict[name] = tau*actor_state_dict[name].clone() + \
(1-tau)*target_actor_dict[name].clone()
self.target_actor.load_state_dict(actor_state_dict)
STATE_DIM_MAP = {
'joint_velocities':7,
'joint_velocities_noise':7,
'joint_positions':7,
'joint_positions_noise':7,
'joint_forces':7,
'joint_forces_noise':7,
'gripper_pose':7,
'gripper_touch_forces':7,
'task_low_dim_state':3
}
class ReachTargetRLAgent(TorchRLAgent):
"""
ReachTargetRLAgent
-----------------------
Algo Of Choice : https://spinningup.openai.com/en/latest/algorithms/ddpg.html
OUTPUT ACTION MODE : ABS_JOINT_VELOCITY
Why DDPG :
So as its a continous actionspace one can try and use DDPG
https://math.stackexchange.com/questions/3179912/policy-gradient-reinforcement-learning-for-continuous-state-and-action-space
https://ai.stackexchange.com/questions/4085/how-can-policy-gradients-be-applied-in-the-case-of-multiple-continuous-actions
TODO : ADD SAVE AND LOAD MODEL METHODS TO ACCOMODATE DDPG.
"""
def __init__(self,collect_gradients=False,warmup=50,ddpg_args=DDPGArgs(),input_states=['joint_velocities','task_low_dim_state']):
super(ReachTargetRLAgent,self).__init__(collect_gradients=collect_gradients,warmup=warmup)
# action should contain 1 extra value for gripper open close state
input_dims = [0 if st not in STATE_DIM_MAP else STATE_DIM_MAP[st] for st in input_states]
input_dims = [sum(input_dims)]
self.neural_network = DDPG(arguements=ddpg_args,input_dims=input_dims,n_actions=8) # 1 DDPG Setup with Different Predictors.
self.agent_name ="DDPG__AGENT"
self.logger = logger.create_logger(self.agent_name)
self.input_states = [st for st in input_states if st in STATE_DIM_MAP]
self.logger.propagate = 0
self.data_loader = None
self.dataset = None
self.print_every = 40
self.curr_state = None
self.logger.info("Agent Wired With Input States : %s",','.join(self.input_states))
def get_information_vector(self,demonstration_episode:List[Observation]):
final_arrs = [np.array([getattr(observation,input_state) for observation in demonstration_episode]) for input_state in self.input_states]
final_vector = np.concatenate(tuple(final_arrs),axis=1)
return final_vector
def observe(self,state_t1:List[Observation],action_t,reward_t:int,done:bool):
"""
State s_t1 can be None because of errors thrown by policy.
"""
state_t1 = None if state_t1[0] is None else self.get_information_vector(state_t1)
self.neural_network.observe(self.curr_state,action_t,reward_t,state_t1,done)
def update(self):
self.neural_network.update_policy()
def reset(self,state:List[Observation]):
self.curr_state = self.get_information_vector(state)
# self.neural_network.reset(self.get_information_vector(state))
def load_model_from_object(self,state_dict):
self.neural_network.from_object(state_dict)
def get_model(self):
return self.neural_network.to_object()
def act(self,state:List[Observation],timestep=0):
"""
ACTION PREDICTION : ABS_JOINT_VELOCITY
"""
state = self.get_information_vector(state)
self.curr_state = state
action = self.neural_network.select_action(state) # 8 Dim Vector
# action = list(action)
return action