Skip to content

Commit 9ed9de1

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 4502520ed60fa98479b3ca6349d1321d505bbe4b
1 parent a77bc04 commit 9ed9de1

File tree

947 files changed

+2717
-2702
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

947 files changed

+2717
-2702
lines changed
0 Bytes
Binary file not shown.
0 Bytes
Binary file not shown.

dev/_downloads/scikit-learn-docs.pdf

60.6 KB
Binary file not shown.
568 Bytes
568 Bytes
308 Bytes
359 Bytes
-144 Bytes
-144 Bytes
-151 Bytes
-161 Bytes
-327 Bytes
-183 Bytes
-165 Bytes
-165 Bytes
-16 Bytes
-16 Bytes
-288 Bytes
-288 Bytes
157 Bytes
157 Bytes
129 Bytes
129 Bytes
-45 Bytes
-45 Bytes
52 Bytes
-408 Bytes
29 Bytes
29 Bytes
980 Bytes
-159 Bytes
-32 Bytes
59 Bytes
59 Bytes
-143 Bytes
16 Bytes

dev/_images/telecom.png

34.3 KB

dev/_sources/about.txt

Lines changed: 13 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -75,6 +75,7 @@ full-time. It also hosts coding sprints and other events.
7575
.. image:: images/inria-logo.jpg
7676
:width: 200pt
7777
:align: center
78+
:target: https://www.inria.fr
7879

7980
`Paris-Saclay Center for Data Science <http://www.datascience-paris-saclay.fr>`_
8081
funded one year for a developer to work on the project full-time
@@ -83,6 +84,7 @@ funded one year for a developer to work on the project full-time
8384
.. image:: images/cds-logo.png
8485
:width: 200pt
8586
:align: center
87+
:target: http://www.datascience-paris-saclay.fr
8688

8789
`NYU Moore-Sloan Data Science Environment <http://cds.nyu.edu/mooresloan/>`_
8890
funds Andreas Mueller (2014-2015) to work on this project. The Moore-Sloan Data Science
@@ -91,6 +93,16 @@ Environment also funds several students to work on the project part-time.
9193
.. image:: images/nyu_short_color.png
9294
:width: 200pt
9395
:align: center
96+
:target: http://cds.nyu.edu/mooresloan/
97+
98+
`Télécom Paristech <http://www.telecom-paristech.com>`_ funds Manoj Kumar (2014),
99+
Tom Dupré la Tour (2015), Raghav R V (2015-2016) and Thierry Guillemot (2016) to
100+
work on scikit-learn.
101+
102+
.. image:: themes/scikit-learn/static/img/telecom.png
103+
:width: 100pt
104+
:align: center
105+
:target: http://www.telecom-paristech.fr/
94106

95107
The following students were sponsored by `Google <https://developers.google.com/open-source/>`_
96108
to work on scikit-learn through the
@@ -177,7 +189,7 @@ The 2013 Paris international sprint
177189
<div style="text-align: center; margin: -7px 0 -10px 0;">
178190

179191

180-
.. |telecom| image:: http://f.hypotheses.org/wp-content/blogs.dir/331/files/2011/03/Logo-TPT.jpg
192+
.. |telecom| image:: themes/scikit-learn/static/img/telecom.png
181193
:width: 120pt
182194
:target: http://www.telecom-paristech.fr/
183195

@@ -226,4 +238,3 @@ Infrastructure support
226238
- We would also like to thank `Shining Panda
227239
<http://shiningpanda.com/>`_ for free CPU time on their Continuous
228240
Integration server.
229-

dev/_sources/auto_examples/applications/plot_model_complexity_influence.txt

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -226,69 +226,69 @@ main code
226226
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
227227
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
228228
verbose=0, warm_start=False)
229-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.027064s
229+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.027466s
230230

231231
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
232232
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
233233
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
234234
power_t=0.5, random_state=None, shuffle=True, verbose=0,
235235
warm_start=False)
236-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020459s
236+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020418s
237237

238238
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
239239
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
240240
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
241241
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
242242
verbose=0, warm_start=False)
243-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.016890s
243+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.016507s
244244

245245
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
246246
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
247247
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
248248
power_t=0.5, random_state=None, shuffle=True, verbose=0,
249249
warm_start=False)
250-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.015149s
250+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014494s
251251

252252
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
253253
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
254254
verbose=False)
255-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000366s
255+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000393s
256256

257257
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
258258
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
259259
verbose=False)
260-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000660s
260+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000698s
261261

262262
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
263263
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
264264
verbose=False)
265-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001113s
265+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001200s
266266

267267
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
268268
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
269269
verbose=False)
270-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001563s
270+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001689s
271271

272272
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
273273
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
274274
verbose=False)
275-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001791s
275+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001925s
276276

277277
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
278278
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
279279
max_leaf_nodes=None, min_impurity_split=1e-07,
280280
min_samples_leaf=1, min_samples_split=2,
281281
min_weight_fraction_leaf=0.0, n_estimators=10, presort='auto',
282282
random_state=None, subsample=1.0, verbose=0, warm_start=False)
283-
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000110s
283+
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000118s
284284

285285
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
286286
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
287287
max_leaf_nodes=None, min_impurity_split=1e-07,
288288
min_samples_leaf=1, min_samples_split=2,
289289
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
290290
random_state=None, subsample=1.0, verbose=0, warm_start=False)
291-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000196s
291+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000209s
292292

293293
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
294294
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -297,7 +297,7 @@ main code
297297
min_weight_fraction_leaf=0.0, n_estimators=100,
298298
presort='auto', random_state=None, subsample=1.0, verbose=0,
299299
warm_start=False)
300-
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000282s
300+
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000302s
301301

302302
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
303303
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -306,7 +306,7 @@ main code
306306
min_weight_fraction_leaf=0.0, n_estimators=200,
307307
presort='auto', random_state=None, subsample=1.0, verbose=0,
308308
warm_start=False)
309-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000449s
309+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000478s
310310

311311
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
312312
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -315,10 +315,10 @@ main code
315315
min_weight_fraction_leaf=0.0, n_estimators=500,
316316
presort='auto', random_state=None, subsample=1.0, verbose=0,
317317
warm_start=False)
318-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000973s
318+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.001048s
319319

320320

321-
**Total running time of the script:** ( 0 minutes 24.481 seconds)
321+
**Total running time of the script:** ( 0 minutes 25.290 seconds)
322322

323323

324324

dev/_sources/auto_examples/applications/plot_out_of_core_classification.txt

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -356,46 +356,46 @@ maximum
356356
Out::
357357

358358
Test set is 878 documents (108 positive)
359-
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.61s ( 598 docs/s)
360-
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.61s ( 596 docs/s)
361-
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.62s ( 595 docs/s)
362-
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.65s ( 582 docs/s)
359+
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.75s ( 550 docs/s)
360+
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.75s ( 549 docs/s)
361+
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.75s ( 548 docs/s)
362+
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.79s ( 537 docs/s)
363363

364364

365-
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 4.70s ( 832 docs/s)
366-
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 4.70s ( 831 docs/s)
367-
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 4.71s ( 830 docs/s)
368-
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 4.74s ( 824 docs/s)
365+
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.13s ( 763 docs/s)
366+
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.13s ( 762 docs/s)
367+
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.13s ( 761 docs/s)
368+
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.17s ( 756 docs/s)
369369

370370

371-
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 7.87s ( 867 docs/s)
372-
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 7.87s ( 866 docs/s)
373-
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 7.88s ( 866 docs/s)
374-
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 7.91s ( 862 docs/s)
371+
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 8.51s ( 801 docs/s)
372+
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 8.51s ( 801 docs/s)
373+
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 8.52s ( 800 docs/s)
374+
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 8.55s ( 797 docs/s)
375375

376376

377-
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 11.02s ( 885 docs/s)
378-
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 11.02s ( 885 docs/s)
379-
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 11.03s ( 885 docs/s)
380-
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 11.06s ( 882 docs/s)
377+
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 11.88s ( 821 docs/s)
378+
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 11.88s ( 821 docs/s)
379+
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 11.89s ( 821 docs/s)
380+
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 11.92s ( 818 docs/s)
381381

382382

383-
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 13.81s ( 845 docs/s)
384-
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 13.81s ( 845 docs/s)
385-
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 13.82s ( 845 docs/s)
386-
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 13.85s ( 843 docs/s)
383+
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.90s ( 783 docs/s)
384+
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.90s ( 783 docs/s)
385+
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.91s ( 783 docs/s)
386+
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 14.94s ( 781 docs/s)
387387

388388

389-
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 16.96s ( 862 docs/s)
390-
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 16.96s ( 862 docs/s)
391-
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 16.97s ( 861 docs/s)
392-
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 17.00s ( 860 docs/s)
389+
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 18.28s ( 800 docs/s)
390+
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 18.28s ( 800 docs/s)
391+
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 18.28s ( 799 docs/s)
392+
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 18.32s ( 798 docs/s)
393393

394394

395-
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 19.93s ( 871 docs/s)
396-
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 19.93s ( 870 docs/s)
397-
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 19.94s ( 870 docs/s)
398-
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 19.97s ( 869 docs/s)
395+
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 21.43s ( 810 docs/s)
396+
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 21.43s ( 809 docs/s)
397+
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 21.44s ( 809 docs/s)
398+
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 21.47s ( 808 docs/s)
399399

400400

401401
Plot results
@@ -526,7 +526,7 @@ Plot results
526526

527527

528528

529-
**Total running time of the script:** ( 0 minutes 21.841 seconds)
529+
**Total running time of the script:** ( 0 minutes 23.420 seconds)
530530

531531

532532

dev/_sources/auto_examples/applications/plot_outlier_detection_housing.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ risk of over-fitting the data.
158158

159159
plt.show()
160160

161-
**Total running time of the script:** ( 0 minutes 4.373 seconds)
161+
**Total running time of the script:** ( 0 minutes 4.683 seconds)
162162

163163

164164

dev/_sources/auto_examples/applications/plot_prediction_latency.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -372,10 +372,10 @@ main code
372372
benchmarking with 100 features
373373
benchmarking with 250 features
374374
benchmarking with 500 features
375-
example run in 3.71s
375+
example run in 3.87s
376376

377377

378-
**Total running time of the script:** ( 0 minutes 3.708 seconds)
378+
**Total running time of the script:** ( 0 minutes 3.875 seconds)
379379

380380

381381

dev/_sources/auto_examples/applications/plot_species_distribution_modeling.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ References
6565

6666
Area under the ROC curve : 0.993919
6767

68-
time elapsed: 7.09s
68+
time elapsed: 7.01s
6969

7070

7171

@@ -247,7 +247,7 @@ References
247247
plot_species_distribution()
248248
plt.show()
249249

250-
**Total running time of the script:** ( 0 minutes 7.089 seconds)
250+
**Total running time of the script:** ( 0 minutes 7.012 seconds)
251251

252252

253253

dev/_sources/auto_examples/applications/plot_stock_market.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -340,7 +340,7 @@ Visualization
340340

341341

342342

343-
**Total running time of the script:** ( 0 minutes 9.742 seconds)
343+
**Total running time of the script:** ( 0 minutes 10.355 seconds)
344344

345345

346346

dev/_sources/auto_examples/applications/plot_tomography_l1_reconstruction.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ contributed to fewer projections than the central disk.
164164

165165
plt.show()
166166

167-
**Total running time of the script:** ( 0 minutes 9.252 seconds)
167+
**Total running time of the script:** ( 0 minutes 9.886 seconds)
168168

169169

170170

dev/_sources/auto_examples/bicluster/plot_spectral_biclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ representation of the checkerboard structure.
106106

107107
plt.show()
108108

109-
**Total running time of the script:** ( 0 minutes 0.875 seconds)
109+
**Total running time of the script:** ( 0 minutes 0.950 seconds)
110110

111111

112112

dev/_sources/auto_examples/bicluster/plot_spectral_coclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ the biclusters.
9393

9494
plt.show()
9595

96-
**Total running time of the script:** ( 0 minutes 0.221 seconds)
96+
**Total running time of the script:** ( 0 minutes 0.241 seconds)
9797

9898

9999

dev/_sources/auto_examples/calibration/plot_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ Plot the data and the predicted probabilities
159159

160160

161161

162-
**Total running time of the script:** ( 0 minutes 0.264 seconds)
162+
**Total running time of the script:** ( 0 minutes 0.284 seconds)
163163

164164

165165

dev/_sources/auto_examples/calibration/plot_calibration_curve.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
214214

215215
plt.show()
216216

217-
**Total running time of the script:** ( 0 minutes 2.160 seconds)
217+
**Total running time of the script:** ( 0 minutes 2.270 seconds)
218218

219219

220220

dev/_sources/auto_examples/calibration/plot_calibration_multiclass.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ would have resulted in a similar decrease in log-loss.
204204

205205
plt.show()
206206

207-
**Total running time of the script:** ( 0 minutes 0.662 seconds)
207+
**Total running time of the script:** ( 0 minutes 0.711 seconds)
208208

209209

210210

dev/_sources/auto_examples/calibration/plot_compare_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,7 +147,7 @@ Plot calibration plots
147147

148148

149149

150-
**Total running time of the script:** ( 0 minutes 2.545 seconds)
150+
**Total running time of the script:** ( 0 minutes 2.693 seconds)
151151

152152

153153

dev/_sources/auto_examples/classification/plot_classification_probability.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ a result it can identify only the first class.
113113

114114
plt.show()
115115

116-
**Total running time of the script:** ( 0 minutes 2.447 seconds)
116+
**Total running time of the script:** ( 0 minutes 2.578 seconds)
117117

118118

119119

dev/_sources/auto_examples/classification/plot_classifier_comparison.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ set.
153153
plt.tight_layout()
154154
plt.show()
155155

156-
**Total running time of the script:** ( 0 minutes 7.662 seconds)
156+
**Total running time of the script:** ( 0 minutes 8.091 seconds)
157157

158158

159159

0 commit comments

Comments
 (0)