-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathconsumer_performance.py
142 lines (122 loc) · 4.82 KB
/
consumer_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# Adapted from https://github.com/mrafayaleem/kafka-jython
from __future__ import absolute_import, print_function
import argparse
import pprint
import sys
import threading
import time
import traceback
from kafka import KafkaConsumer
class ConsumerPerformance(object):
@staticmethod
def run(args):
try:
props = {}
for prop in args.consumer_config:
k, v = prop.split('=')
try:
v = int(v)
except ValueError:
pass
if v == 'None':
v = None
elif v == 'False':
v = False
elif v == 'True':
v = True
props[k] = v
print('Initializing Consumer...')
props['bootstrap_servers'] = args.bootstrap_servers
props['auto_offset_reset'] = 'earliest'
if 'group_id' not in props:
props['group_id'] = 'kafka-consumer-benchmark'
if 'consumer_timeout_ms' not in props:
props['consumer_timeout_ms'] = 10000
props['metrics_sample_window_ms'] = args.stats_interval * 1000
for k, v in props.items():
print('---> {0}={1}'.format(k, v))
consumer = KafkaConsumer(args.topic, **props)
print('---> group_id={0}'.format(consumer.config['group_id']))
print('---> report stats every {0} secs'.format(args.stats_interval))
print('---> raw metrics? {0}'.format(args.raw_metrics))
timer_stop = threading.Event()
timer = StatsReporter(args.stats_interval, consumer,
event=timer_stop,
raw_metrics=args.raw_metrics)
timer.start()
print('-> OK!')
print()
start_time = time.time()
records = 0
for msg in consumer:
records += 1
if records >= args.num_records:
break
end_time = time.time()
timer_stop.set()
timer.join()
print('Consumed {0} records'.format(records))
print('Execution time:', end_time - start_time, 'secs')
except Exception:
exc_info = sys.exc_info()
traceback.print_exception(*exc_info)
sys.exit(1)
class StatsReporter(threading.Thread):
def __init__(self, interval, consumer, event=None, raw_metrics=False):
super(StatsReporter, self).__init__()
self.interval = interval
self.consumer = consumer
self.event = event
self.raw_metrics = raw_metrics
def print_stats(self):
metrics = self.consumer.metrics()
if self.raw_metrics:
pprint.pprint(metrics)
else:
print('{records-consumed-rate} records/sec ({bytes-consumed-rate} B/sec),'
' {fetch-latency-avg} latency,'
' {fetch-rate} fetch/s,'
' {fetch-size-avg} fetch size,'
' {records-lag-max} max record lag,'
' {records-per-request-avg} records/req'
.format(**metrics['consumer-fetch-manager-metrics']))
def print_final(self):
self.print_stats()
def run(self):
while self.event and not self.event.wait(self.interval):
self.print_stats()
else:
self.print_final()
def get_args_parser():
parser = argparse.ArgumentParser(
description='This tool is used to verify the consumer performance.')
parser.add_argument(
'--bootstrap-servers', type=str, nargs='+', default=(),
help='host:port for cluster bootstrap servers')
parser.add_argument(
'--topic', type=str,
help='Topic for consumer test (default: kafka-python-benchmark-test)',
default='kafka-python-benchmark-test')
parser.add_argument(
'--num-records', type=int,
help='number of messages to consume (default: 1000000)',
default=1000000)
parser.add_argument(
'--consumer-config', type=str, nargs='+', default=(),
help='kafka consumer related configuration properties like '
'bootstrap_servers,client_id etc..')
parser.add_argument(
'--fixture-compression', type=str,
help='specify a compression type for use with broker fixtures / producer')
parser.add_argument(
'--stats-interval', type=int,
help='Interval in seconds for stats reporting to console (default: 5)',
default=5)
parser.add_argument(
'--raw-metrics', action='store_true',
help='Enable this flag to print full metrics dict on each interval')
return parser
if __name__ == '__main__':
args = get_args_parser().parse_args()
ConsumerPerformance.run(args)