
Hacker Laws
Laws, Theories, Principles and Patterns that developers will find

useful. v0.1.0, 2020-10-01.

Dave Kerr, github.com/dwmkerr/hacker-laws

Table Of Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

90–9–1 Principle (1% Rule) . . . . . . . . . . . . . . . . . . . . . 3
Amdahl’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
The Broken Windows Theory . . . . . . . . . . . . . . . . . . . . 4
Brooks’ Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
CAP Theorem (Brewer’s Theorem) . . . . . . . . . . . . . . . . . 5
Conway’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Cunningham’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Dunbar’s Number . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Fitts’ Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Gall’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Goodhart’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hanlon’s Razor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hick’s Law (Hick-Hyman Law) . . . . . . . . . . . . . . . . . . . 8
Hofstadter’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Hutber’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The Hype Cycle & Amara’s Law . . . . . . . . . . . . . . . . . . 10
Hyrum’s Law (The Law of Implicit Interfaces) . . . . . . . . . . . 11
Kernighan’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Linus’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Metcalfe’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Moore’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Murphy’s Law / Sod’s Law . . . . . . . . . . . . . . . . . . . . . 12
Occam’s Razor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Parkinson’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Premature Optimization Effect . . . . . . . . . . . . . . . . . . . 14
Putt’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Reed’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
The Law of Conservation of Complexity (Tesler’s Law) . . . . . . 15
The Law of Demeter . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



The Law of Leaky Abstractions . . . . . . . . . . . . . . . . . . . 15
The Law of Triviality . . . . . . . . . . . . . . . . . . . . . . . . . 16
The Unix Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 16
The Spotify Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
The Two Pizza Rule . . . . . . . . . . . . . . . . . . . . . . . . . 17
Wadler’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Wheaton’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
All Models Are Wrong (George Box’s Law) . . . . . . . . . . . . 18
Chesterson’s Fence . . . . . . . . . . . . . . . . . . . . . . . . . . 19
The Dead Sea Effect . . . . . . . . . . . . . . . . . . . . . . . . . 19
The Dilbert Principle . . . . . . . . . . . . . . . . . . . . . . . . 19
The Pareto Principle (The 80/20 Rule) . . . . . . . . . . . . . . . 20
The Shirky Principle . . . . . . . . . . . . . . . . . . . . . . . . . 20
The Peter Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 21
The Robustness Principle (Postel’s Law) . . . . . . . . . . . . . . 21
SOLID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
The Single Responsibility Principle . . . . . . . . . . . . . . . . . 22
The Open/Closed Principle . . . . . . . . . . . . . . . . . . . . . 22
The Liskov Substitution Principle . . . . . . . . . . . . . . . . . . 23
The Interface Segregation Principle . . . . . . . . . . . . . . . . . 23
The Dependency Inversion Principle . . . . . . . . . . . . . . . . 24
The DRY Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 25
The KISS principle . . . . . . . . . . . . . . . . . . . . . . . . . . 25
YAGNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
The Fallacies of Distributed Computing . . . . . . . . . . . . . . 26

Reading List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Online Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PDF eBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Podcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Laws, Theories, Principles and Patterns that developers will find useful.

Like this project? Please considering sponsoring me and the translators. Also
check out this podcast on The Changelog - Laws for Hackers to Live By to learn
more about the project! You can also download the latest PDF eBook.

Introduction
There are lots of laws which people discuss when talking about development.
This repository is a reference and overview of some of the most common ones.
Please share and submit PRs!

Warning: This repo contains an explanation of some laws, principles and patterns,
but does not advocate for any of them. Whether they should be applied will

2

https://github.com/sponsors/dwmkerr
https://changelog.com/podcast/403
https://github.com/dwmkerr/hacker-laws/releases/latest/download/hacker-laws.pdf


always be a matter of debate, and greatly dependent on what you are working
on.

Laws
And here we go!

90–9–1 Principle (1% Rule)

1% Rule on Wikipedia

The 90-9-1 principle suggests that within an internet community such as a wiki,
90% of participants only consume content, 9% edit or modify content and 1% of
participants add content.

Real-world examples:

• A 2014 study of four digital health social networks found the top 1%
created 73% of posts, the next 9% accounted for an average of ~25% and
the remaining 90% accounted for an average of 2% (Reference)

See Also:

• Pareto principle

Amdahl’s Law

Amdahl’s Law on Wikipedia

Amdahl’s Law is a formula which shows the potential speedup of a
computational task which can be achieved by increasing the resources
of a system. Normally used in parallel computing, it can predict
the actual benefit of increasing the number of processors, which is
limited by the parallelisability of the program.

Best illustrated with an example. If a program is made up of two parts, part
A, which must be executed by a single processor, and part B, which can be
parallelised, then we see that adding multiple processors to the system executing
the program can only have a limited benefit. It can potentially greatly improve
the speed of part B - but the speed of part A will remain unchanged.

The diagram below shows some examples of potential improvements in speed:

As can be seen, even a program which is 50% parallelisable will benefit very
little beyond 10 processing units, whereas a program which is 95% parallelisable
can still achieve significant speed improvements with over a thousand processing
units.

As Moore’s Law slows, and the acceleration of individual processor speed slows,
parallelisation is key to improving performance. Graphics programming is an
excellent example - with modern Shader based computing, individual pixels or

3

https://en.wikipedia.org/wiki/1%25_rule_(Internet_culture)
https://www.jmir.org/2014/2/e33/
https://en.wikipedia.org/wiki/Amdahl%27s_law


fragments can be rendered in parallel - this is why modern graphics cards often
have many thousands of processing cores (GPUs or Shader Units).

See also:

• Brooks’ Law
• Moore’s Law

The Broken Windows Theory

The Broken Windows Theory on Wikipedia

The Broken Windows Theory suggests that visible signs of crime (or lack of
care of an environment) lead to further and more serious crimes (or further
deterioration of the environment).

This theory has been applied to software development, suggesting that poor
quality code (or Technical Debt) can lead to a perception that efforts to improve
quality may be ignored or undervalued, thus leading to further poor quality code.
This effect cascades leading to a great decrease in quality over time.

See also:

• Technical Debt

Examples:

• The Pragmatic Programming: Software Entropy
• Coding Horror: The Broken Window Theory
• OpenSource: Joy of Programming - The Broken Window Theory

Brooks’ Law

Brooks’ Law on Wikipedia

Adding human resources to a late software development project makes
it later.

This law suggests that in many cases, attempting to accelerate the delivery of a
project which is already late, by adding more people, will make the delivery even
later. Brooks is clear that this is an over-simplification, however, the general
reasoning is that given the ramp up time of new resources and the communication
overheads, in the immediate short-term velocity decreases. Also, many tasks
may not be divisible, i.e. easily distributed between more resources, meaning the
potential velocity increase is also lower.

The common phrase in delivery “Nine women can’t make a baby in one month”
relates to Brooks’ Law, in particular, the fact that some kinds of work are not
divisible or parallelisable.

This is a central theme of the book ‘The Mythical Man Month’.

See also:

4

https://en.wikipedia.org/wiki/Broken_windows_theory
https://pragprog.com/the-pragmatic-programmer/extracts/software-entropy
https://blog.codinghorror.com/the-broken-window-theory/
https://opensourceforu.com/2011/05/joy-of-programming-broken-window-theory/
https://en.wikipedia.org/wiki/Brooks%27s_law


• Death March
• Reading List: The Mythical Man Month

CAP Theorem (Brewer’s Theorem)

The CAP Theorem (defined by Eric Brewer) states that for a distributed data
store only two out of the following three guarantees (at most) can be made:

• Consistency: when reading data, every request receives the most recent
data or an error is returned

• Availability: when reading data, every request receives a non error response,
without the guarantee that it is the most recent data

• Partition Tolerance: when an arbitrary number of network requests between
nodes fail, the system continues to operate as expected

The core of the reasoning is as follows. It is impossible to guarantee that a
network partition will not occur (see The Fallacies of Distributed Computing).
Therefore in the case of a partition we can either cancel the operation (increasing
consistency and decreasing availability) or proceed (increasing availability but
decreasing consistency).

The name comes from the first letters of the guarantees (Consistency, Availability,
Partition Tolerance). Note that it is very important to be aware that this does
not relate to ACID, which has a different definition of consistency. More recently,
PACELC theorem has been developed which adds constraints for latency and
consistency when the network is not partitioned (i.e. when the system is operating
as expected).

Most modern database platforms acknowledge this theorem implicitly by offering
the user of the database the option to choose between whether they want a highly
available operation (which might include a ‘dirty read’) or a highly consistent
operation (for example a ‘quorum acknowledged write’).

Real world examples:

• Inside Google Cloud Spanner and the CAP Theorem - Goes into the details
of how Cloud Spanner works, which appears at first to seem like a platform
which has all of the guarantees of CAP, but under the hood is essentially
a CP system.

See also:

• ACID
• The Fallacies of Distributed Computing
• PACELC

Conway’s Law

Conway’s Law on Wikipedia

5

https://cloud.google.com/blog/products/gcp/inside-cloud-spanner-and-the-cap-theorem
https://en.wikipedia.org/wiki/Conway%27s_law


This law suggests that the technical boundaries of a system will reflect the
structure of the organisation. It is commonly referred to when looking at
organisation improvements, Conway’s Law suggests that if an organisation is
structured into many small, disconnected units, the software it produces will be.
If an organisation is built more around ‘verticals’ which are orientated around
features or services, the software systems will also reflect this.

See also:

• The Spotify Model

Cunningham’s Law

Cunningham’s Law on Wikipedia

The best way to get the right answer on the Internet is not to ask a
question, it’s to post the wrong answer.

According to Steven McGeady, Ward Cunningham advised him in the early
1980s: “The best way to get the right answer on the Internet is not to ask a
question, it’s to post the wrong answer.” McGeady dubbed this Cunningham’s
law, though Cunningham denies ownership calling it a “misquote.” Although
originally referring to interactions on Usenet, the law has been used to describe
how other online communities work (e.g., Wikipedia, Reddit, Twitter, Facebook).

See also:

• XKCD 386: “Duty Calls”

Dunbar’s Number

Dunbar’s Number on Wikipedia

“Dunbar’s number is a suggested cognitive limit to the number of people with
whom one can maintain stable social relationships— relationships in which an
individual knows who each person is and how each person relates to every other
person.” There is some disagreement to the exact number. “. . . [Dunbar]
proposed that humans can comfortably maintain only 150 stable relationships.”
He put the number into a more social context, “the number of people you would
not feel embarrassed about joining uninvited for a drink if you happened to
bump into them in a bar.” Estimates for the number generally lay between 100
and 250.

Like stable relationships between individuals, a developer’s relationship with a
codebase takes effort to maintain. When faced with large complicated projects,
or ownership of many projects we lean on convention, policy, and modeled
procedure to scale. Dunbar’s number is not only important to keep in mind
as an office grows, but also when setting the scope for team efforts or deciding
when a system should invest in tooling to assist in modeling and automating
logistical overhead. Putting the number into an engineering context, it is the

6

https://en.wikipedia.org/wiki/Ward_Cunningham#Cunningham's_Law
https://xkcd.com/386/
https://en.wikipedia.org/wiki/Dunbar%27s_number


number of projects (or normalized complexity of a single project) for which you
would feel confident in joining an on-call rotation to support.

See also:

• Conway’s Law

Fitts’ Law

Fitts’ Law on Wikipedia

Fitts’ law predicts that the time required to move to a target area is a function
of the distance to the target divided by the width of the target.

The consequences of this law dictate that when designing UX or UI, interactive
elements should be as large as possible and the distance between the users
attention area and interactive element should be as small as possible. This has
consequences on design, such as grouping tasks that are commonly used with
one another close.

It also formalises the concept of ‘magic corners’, the corners of the screen to
which a user can ‘sweep’ their mouse to easily hit - which is where key UI
elements can be placed. The Windows Start button is in a magic corner, making
it easy to select, and as an interesting contrast, the MacOS ‘close window’ button
is not in a magic corner, making it hard to hit by mistake.

See also:

• The information capacity of the human motor system in controlling the
amplitude of movement.

Gall’s Law

Gall’s Law on Wikipedia

A complex system that works is invariably found to have evolved
from a simple system that worked. A complex system designed from
scratch never works and cannot be patched up to make it work. You
have to start over with a working simple system.

(John Gall)

Gall’s Law implies that attempts to design highly complex systems are likely to
fail. Highly complex systems are rarely built in one go, but evolve instead from
more simple systems.

The classic example is the world-wide-web. In its current state, it is a highly
complex system. However, it was defined initially as a simple way to share
content between academic institutions. It was very successful in meeting these
goals and evolved to become more complex over time.

See also:

7

https://en.wikipedia.org/wiki/Fitts%27s_law
https://www.semanticscholar.org/paper/The-information-capacity-of-the-human-motor-system-Fitts/634c9fde5f1c411e4487658ac738dcf18d98ea8d
https://www.semanticscholar.org/paper/The-information-capacity-of-the-human-motor-system-Fitts/634c9fde5f1c411e4487658ac738dcf18d98ea8d
https://en.wikipedia.org/wiki/John_Gall_(author)#Gall's_law
https://en.wikipedia.org/wiki/John_Gall_(author)


• KISS (Keep It Simple, Stupid)

Goodhart’s Law

The Goodhart’s Law on Wikipedia

Any observed statistical regularity will tend to collapse once pressure
is placed upon it for control purposes.

Charles Goodhart

Also commonly referenced as:

When a measure becomes a target, it ceases to be a good measure.

Marilyn Strathern

The law states that the measure-driven optimizations could lead to devaluation
of the measurement outcome itself. Overly selective set of measures (KPIs)
blindly applied to a process results in distorted effect. People tend to optimize
locally by “gaming” the system in order to satisfy particular metrics instead of
paying attention to holistic outcome of their actions.

Real-world examples: - Assert-free tests satisfy the code coverage expectation,
despite the fact that the metric intent was to create well-tested software. -
Developer performance score indicated by the number of lines committed leads
to unjustifiably bloated codebase.

See also: - Goodhart’s Law: How Measuring The Wrong Things Drive Immoral
Behaviour - Dilbert on bug-free software

Hanlon’s Razor

Hanlon’s Razor on Wikipedia

Never attribute to malice that which is adequately explained by
stupidity.

Robert J. Hanlon

This principle suggests that actions resulting in a negative outcome were not a
result of ill will. Instead the negative outcome is more likely attributed to those
actions and/or the impact being not fully understood.

Hick’s Law (Hick-Hyman Law)

Hick’s law on Wikipedia

Decision time grows logarithmically with the number of options you
can choose from.

William Edmund Hick and Ray Hyman

8

https://en.wikipedia.org/wiki/Goodhart's_law
https://en.wikipedia.org/wiki/Performance_indicator
https://coffeeandjunk.com/goodharts-campbells-law/
https://coffeeandjunk.com/goodharts-campbells-law/
https://dilbert.com/strip/1995-11-13
https://en.wikipedia.org/wiki/Hanlon%27s_razor
https://en.wikipedia.org/wiki/Hick%27s_law


In the equation below, T is the time to make a decision, n is the number of
options, and b is a constant which is determined by analysis of the data.

Figure 1: Hicks law

This law only applies when the number of options is ordered, for example,
alphabetically. This is implied in the base two logarithm - which implies the
decision maker is essentially performing a binary search. If the options are not
well ordered, experiments show the time taken is linear.

This is has significant impact in UI design; ensuring that users can easily search
through options leads to faster decision making.

A correlation has also been shown in Hick’s Law between IQ and reaction time
as shown in Speed of Information Processing: Developmental Change and Links
to Intelligence.

See also: - Fitts’s Law

Hofstadter’s Law

Hofstadter’s Law on Wikipedia

It always takes longer than you expect, even when you take into
account Hofstadter’s Law.

(Douglas Hofstadter)

You might hear this law referred to when looking at estimates for how long
something will take. It seems a truism in software development that we tend
to not be very good at accurately estimating how long something will take to
deliver.

This is from the book ‘Gödel, Escher, Bach: An Eternal Golden Braid’.

See also:

• Reading List: Gödel, Escher, Bach: An Eternal Golden Braid

Hutber’s Law

Hutber’s Law on Wikipedia

Improvement means deterioration.

(Patrick Hutber)

This law suggests that improvements to a system will lead to deterioration in
other parts, or it will hide other deterioration, leading overall to a degradation
from the current state of the system.

9

https://www.sciencedirect.com/science/article/pii/S0022440599000369
https://www.sciencedirect.com/science/article/pii/S0022440599000369
https://en.wikipedia.org/wiki/Hofstadter%27s_law
https://en.wikipedia.org/wiki/Hutber%27s_law
https://en.wikipedia.org/wiki/Patrick_Hutber


For example, a decrease in response latency for a particular end-point could
cause increased throughput and capacity issues further along in a request flow,
affecting an entirely different sub-system.

The Hype Cycle & Amara’s Law

The Hype Cycle on Wikipedia

We tend to overestimate the effect of a technology in the short run
and underestimate the effect in the long run.

(Roy Amara)

The Hype Cycle is a visual representation of the excitement and development of
technology over time, originally produced by Gartner. It is best shown with a
visual:

Figure 2: The Hype Cycle

In short, this cycle suggests that there is typically a burst of excitement around
new technology and its potential impact. Teams often jump into these technolo-
gies quickly, and sometimes find themselves disappointed with the results. This
might be because the technology is not yet mature enough, or real-world applica-
tions are not yet fully realised. After a certain amount of time, the capabilities
of the technology increase and practical opportunities to use it increase, and
teams can finally become productive. Roy Amara’s quote sums this up most
succinctly - “We tend to overestimate the effect of a technology in the short run
and underestimate in the long run”.

10

https://en.wikipedia.org/wiki/Hype_cycle


Hyrum’s Law (The Law of Implicit Interfaces)

Hyrum’s Law Online

With a sufficient number of users of an API, it does not matter what
you promise in the contract: all observable behaviours of your system
will be depended on by somebody.

(Hyrum Wright)

See also:

• The Law of Leaky Abstractions
• XKCD 1172

Kernighan’s Law

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.

(Brian Kernighan)

Kernighan’s Law is named for Brian Kernighan and derived from a quote from
Kernighan and Plauger’s book The Elements of Programming Style:

Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you’re as clever as you can be when you write
it, how will you ever debug it?

While hyperbolic, Kernighan’s Law makes the argument that simple code is
to be preferred over complex code, because debugging any issues that arise in
complex code may be costly or even infeasible.

See also:

• The KISS Principle
• The Unix Philosophy
• Occam’s Razor

Linus’s Law

Linus’s Law on Wikipedia

Given enough eyeballs, all bugs are shallow.

Eric S. Raymond

This law simply states that the more people who can see a problem, the higher
the likelihood that someone will have seen and solved the problem before, or
something very similar.

Although it was originally used to describe the value of open-source models
for projects it can be accepted for any kind of software project. It can also

11

http://www.hyrumslaw.com/
https://xkcd.com/1172/
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style
https://en.wikipedia.org/wiki/Linus%27s_law


be extended to processes - more code reviews, more static analysis and multi-
disciplined test processes will make the problems more visible and easy to
identify.

A more formal statement can be:

Given a large enough beta-tester and co-developer base, almost every
problem will be characterized quickly and can be solved by someone
who has encountered a similar problem before.

This law was named in honour of Linus Torvalds in Eric S. Raymond’s book
“The Cathedral and the Bazaar”.

Metcalfe’s Law

Metcalfe’s Law on Wikipedia

In network theory, the value of a system grows as approximately the
square of the number of users of the system.

This law is based on the number of possible pairwise connections within a system
and is closely related to Reed’s Law. Odlyzko and others have argued that
both Reed’s Law and Metcalfe’s Law overstate the value of the system by not
accounting for the limits of human cognition on network effects; see Dunbar’s
Number.

See also: - Reed’s Law - Dunbar’s Number

Moore’s Law

Moore’s Law on Wikipedia

The number of transistors in an integrated circuit doubles approxi-
mately every two years.

Often used to illustrate the sheer speed at which semiconductor and chip tech-
nology has improved, Moore’s prediction has proven to be highly accurate over
from the 1970s to the late 2000s. In more recent years, the trend has changed
slightly, partly due to physical limitations on the degree to which components
can be miniaturised. However, advancements in parallelisation, and potentially
revolutionary changes in semiconductor technology and quantum computing
may mean that Moore’s Law could continue to hold true for decades to come.

Murphy’s Law / Sod’s Law

Murphy’s Law on Wikipedia

Anything that can go wrong will go wrong.

Related to Edward A. Murphy, Jr Murphy’s Law states that if a thing can go
wrong, it will go wrong.

12

https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.wikipedia.org/wiki/Metcalfe's_law
https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Quantum_tunnelling
https://en.wikipedia.org/wiki/Quantum_tunnelling
https://en.wikipedia.org/wiki/Murphy%27s_law
https://en.wikipedia.org/wiki/Edward_A._Murphy_Jr.


This is a common adage among developers. Sometimes the unexpected happens
when developing, testing or even in production. This can also be related to the
(more common in British English) Sod’s Law:

If something can go wrong, it will, at the worst possible time.

These ‘laws’ are generally used in a comic sense. However, phenomena such as
Confirmation Bias and Selection Bias can lead people to perhaps over-emphasise
these laws (the majority of times when things work, they go unnoticed, failures
however are more noticeable and draw more discussion).

See Also:

• Confirmation Bias
• Selection Bias

Occam’s Razor

Occam’s Razor on Wikipedia

Entities should not be multiplied without necessity.

William of Ockham

Occam’s razor says that among several possible solutions, the most likely solution
is the one with the least number of concepts and assumptions. This solution is
the simplest and solves only the given problem, without introducing accidental
complexity and possible negative consequences.

See also:

• YAGNI
• No Silver Bullet: Accidental Complexity and Essential Complexity

Example:

• Lean Software Development: Eliminate Waste

Parkinson’s Law

Parkinson’s Law on Wikipedia

Work expands so as to fill the time available for its completion.

In its original context, this Law was based on studies of bureaucracies. It may
be pessimistically applied to software development initiatives, the theory being
that teams will be inefficient until deadlines near, then rush to complete work
by the deadline, thus making the actual deadline somewhat arbitrary.

See also:

• Hofstadter’s Law

13

https://en.wikipedia.org/wiki/Occam's_razor
https://en.wikipedia.org/wiki/No_Silver_Bullet
https://en.wikipedia.org/wiki/Lean_software_development#Eliminate_waste
https://en.wikipedia.org/wiki/Parkinson%27s_law


Premature Optimization Effect

Premature Optimization on WikiWikiWeb

Premature optimization is the root of all evil.

(Donald Knuth)

However, Premature Optimization can be defined (in less loaded terms) as
optimizing before we know that we need to.

Putt’s Law

Putt’s Law on Wikipedia

Technology is dominated by two types of people, those who under-
stand what they do not manage and those who manage what they
do not understand.

Putt’s Law is often followed by Putt’s Corollary:

Every technical hierarchy, in time, develops a competence inversion.

These statements suggest that due to various selection criteria and trends in how
groups organise, there will be a number of skilled people at working levels of a
technical organisations, and a number of people in managerial roles who are not
aware of the complexities and challenges of the work they are managing. This
can be due to phenomena such as The Peter Principle or The Dilbert Principle.

However, it should be stressed that Laws such as this are vast generalisations
and may apply to some types of organisations, and not apply to others.

See also:

• The Peter Principle
• The Dilbert Principle

Reed’s Law

Reed’s Law on Wikipedia

The utility of large networks, particularly social networks, scales
exponentially with the size of the network.

This law is based on graph theory, where the utility scales as the number of
possible sub-groups, which is faster than the number of participants or the
number of possible pairwise connections. Odlyzko and others have argued that
Reed’s Law overstates the utility of the system by not accounting for the limits
of human cognition on network effects; see Dunbar’s Number.

See also: - Metcalfe’s Law - Dunbar’s Number

14

http://wiki.c2.com/?PrematureOptimization
https://twitter.com/realdonaldknuth?lang=en
https://en.wikipedia.org/wiki/Putt%27s_Law_and_the_Successful_Technocrat
https://en.wikipedia.org/wiki/Reed's_law


The Law of Conservation of Complexity (Tesler’s Law)

The Law of Conservation of Complexity on Wikipedia

This law states that there is a certain amount of complexity in a system which
cannot be reduced.

Some complexity in a system is ‘inadvertent’. It is a consequence of poor structure,
mistakes, or just bad modeling of a problem to solve. Inadvertent complexity
can be reduced (or eliminated). However, some complexity is ‘intrinsic’ as
a consequence of the complexity inherent in the problem being solved. This
complexity can be moved, but not eliminated.

One interesting element to this law is the suggestion that even by simplifying
the entire system, the intrinsic complexity is not reduced, it is moved to the user,
who must behave in a more complex way.

The Law of Demeter

The Law of Demeter on Wikipedia

Don’t talk to strangers.

The Law of Demeter, also known as “The Principle of Least Knowledge” is a
principle for software design, particularly relevant in object orientated languages.

It states that a unit of software should talk only to its immediate collaborators.
An object A with a reference to object B can call its methods, but if B has a
reference to object C, A should not call Cs methods. So, if C has a doThing()
method, A should not invoke it directly; B.getC().doThis().

Following this principal limits the scope of changes, making them easier and
safer in future.

The Law of Leaky Abstractions

The Law of Leaky Abstractions on Joel on Software

All non-trivial abstractions, to some degree, are leaky.

(Joel Spolsky)

This law states that abstractions, which are generally used in computing to
simplify working with complicated systems, will in certain situations ‘leak’
elements of the underlying system, this making the abstraction behave in an
unexpected way.

The example above can become more complex when more abstractions are
introduced. The Linux operating system allows files to be accessed over a
network but represented locally as ‘normal’ files. This abstraction will ‘leak’
if there are network failures. If a developer treats these files as ‘normal’ files,

15

https://en.wikipedia.org/wiki/Law_of_conservation_of_complexity
https://en.wikipedia.org/wiki/Law_of_Demeter
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://twitter.com/spolsky


without considering the fact that they may be subject to network latency and
failures, the solutions will be buggy.

The article describing the law suggests that an over-reliance on abstractions,
combined with a poor understanding of the underlying processes, actually makes
dealing with the problem at hand more complex in some cases.

See also:

• Hyrum’s Law

Real-world examples:

• Photoshop Slow Startup - an issue I encountered in the past. Photoshop
would be slow to startup, sometimes taking minutes. It seems the issue
was that on startup it reads some information about the current default
printer. However, if that printer is actually a network printer, this could
take an extremely long time. The abstraction of a network printer being
presented to the system similar to a local printer caused an issue for users
in poor connectivity situations.

The Law of Triviality

The Law of Triviality on Wikipedia

This law suggests that groups will give far more time and attention to trivial or
cosmetic issues rather than serious and substantial ones.

The common fictional example used is that of a committee approving plans
for nuclear power plant, who spend the majority of their time discussing the
structure of the bike shed, rather than the far more important design for the
power plant itself. It can be difficult to give valuable input on discussions about
very large, complex topics without a high degree of subject matter expertise
or preparation. However, people want to be seen to be contributing valuable
input. Hence a tendency to focus too much time on small details, which can be
reasoned about easily, but are not necessarily of particular importance.

The fictional example above led to the usage of the term ‘Bike Shedding’ as an
expression for wasting time on trivial details. A related term is ‘Yak Shaving,’
which connotes a seemingly irrelevant activity that is part of a long chain of
prerequisites to the main task.

The Unix Philosophy

The Unix Philosophy on Wikipedia

The Unix Philosophy is that software components should be small, and focused
on doing one specific thing well. This can make it easier to build systems by
composing together small, simple, well-defined units, rather than using large,
complex, multi-purpose programs.

16

https://forums.adobe.com/thread/376152
https://en.wikipedia.org/wiki/Law_of_triviality
https://en.wiktionary.org/wiki/yak_shaving
https://en.wikipedia.org/wiki/Unix_philosophy


Modern practices like ‘Microservice Architecture’ can be thought of as an appli-
cation of this law, where services are small, focused and do one specific thing,
allowing complex behaviour to be composed of simple building blocks.

The Spotify Model

The Spotify Model on Spotify Labs

The Spotify Model is an approach to team and organisation structure which
has been popularised by ‘Spotify’. In this model, teams are organised around
features, rather than technologies.

The Spotify Model also popularises the concepts of Tribes, Guilds, Chapters,
which are other components of their organisation structure.

Members of the organisation have described that the actual meaning of these
groups changes, evolves and is an on-going experiment. The fact that the model
is a process in motion, rather than a fixed model continues to lead to varying
interpretations of the structure, which may be based on presentations given by
employees at conferences. This means ‘snapshots’ may be ‘re-packaged’ by third
parties as a fixed structure, with the fact that the model is dynamic being lost.

The Two Pizza Rule

If you can’t feed a team with two pizzas, it’s too large.

(Jeff Bezos)

This rule suggests that regardless of the size of the company, teams should be
small enough to be fed by two pizzas. Attributed to Jeff Bezos and Amazon, this
belief is suggests that large teams are inherently inefficient. This is supported
by the fact that as the team size increases linearly, the links between people
increases exponentially; thus the cost of coordinating and communicating also
grows exponentially. If this cost of coordination is essentially overhead, then
smaller teams should be preferred.

The number of links between people can be expressed as n(n-1)/2 where n =
number of people.

Wadler’s Law

Wadler’s Law on wiki.haskell.org

In any language design, the total time spent discussing a feature in
this list is proportional to two raised to the power of its position.

0. Semantics
1. Syntax
2. Lexical syntax
3. Lexical syntax of comments

17

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://wiki.haskell.org/Wadler's_Law


(In short, for every hour spent on semantics, 8 hours will be spent
on the syntax of comments).

Similar to The Law of Triviality, Wadler’s Law states what when designing a
language, the amount of time spent on language structures is disproportionately
high in comparison to the importance of those features.

See also:

• The Law of Triviality

Wheaton’s Law

The Link

The Official Day

Don’t be a dick.

Wil Wheaton

Coined byWil Wheaton (Star Trek: The Next Generation, The Big Bang Theory),
this simple, concise, and powerful law aims for an increase in harmony and
respect within a professional organization. It can be applied when speaking with
coworkers, performing code reviews, countering other points of view, critiquing,
and in general, most professional interactions humans have with each other.

Principles
Principles are generally more likely to be guidelines relating to design.

All Models Are Wrong (George Box’s Law)

All Models Are Wrong

All models are wrong, but some are useful.

George Box

This principle suggests that all models of systems are flawed, but that as long
as they are not too flawed they may be useful. This principle has its roots in
statistics but applies to scientific and computing models as well.

A fundamental requirement of most software is to model a system of some kind.
Regardless of whether the system being modeled is a computer network, a library,
a graph of social connections or any other kind of system, the designer will have
to decide an appropriate level of detail to model. Excessive detail may lead
to too much complexity, too little detail may prevent the model from being
functional.

See also:

• The Law of Leaky Abstractions

18

http://www.wheatonslaw.com/
https://dontbeadickday.com/
https://en.wikipedia.org/wiki/All_models_are_wrong


Chesterson’s Fence

Chesterson’s Fence on Wikipedia

Reforms should not be made until the reasoning behind the existing
state of affairs is understood.

This principle is relevant in software engineering when removing technical debt.
Each line of a program was originally written by someone for some reason.
Chesterson’s Fence suggests that one should try to understand the context and
meaning of the code fully, before changing or removing it, even if at first glance
it seems redundant or incorrect.

The name of this principle comes from a story by G.K. Chesterson. A man
comes across a fence crossing the middle of the road. He complains to the mayor
that this useless fence is getting in the way, and asks to remove it. The mayor
asks why the fence is there in the first place. When the man says he doesn’t
know, the mayor says, “If you don’t know its purpose, I certainly won’t let you
remove it. Go and find out the use of it, and then I may let you destroy it.”

The Dead Sea Effect

The Dead Sea Effect on Bruce F. Webster

“. . . [T]he more talented and effective IT engineers are the ones most
likely to leave - to evaporate . . . [those who tend to] remain behind
[are] the ‘residue’ — the least talented and effective IT engineers.”

Bruce F. Webster

The “Dead Sea Effect” suggests that in any organisation, the skills/talent/efficacy
of engineers is often inversely proportional to their time in the company.

Typically, highly skilled engineers find it easy to gain employment elsewhere and
are the first to do so. Engineers who have obsolete or weak skills will tend to
remain with the company, as finding employment elsewhere is difficult. This
is particularly pronounced if they have gained incremental pay rises over their
time in the company, as it can be challenging to get equivalent remuneration
elsewhere.

The Dilbert Principle

The Dilbert Principle on Wikipedia

Companies tend to systematically promote incompetent employees
to management to get them out of the workflow.

Scott Adams

A management concept developed by Scott Adams (creator of the Dilbert comic
strip), the Dilbert Principle is inspired by The Peter Principle. Under the Dilbert
Principle, employees who were never competent are promoted to management in

19

https://en.wikipedia.org/wiki/Wikipedia:Chesterton%27s_fence
https://en.wikipedia.org/wiki/G._K._Chesterton
http://brucefwebster.com/2008/04/11/the-wetware-crisis-the-dead-sea-effect/
https://en.wikipedia.org/wiki/Dilbert_principle


order to limit the damage they can do. Adams first explained the principle in
a 1995 Wall Street Journal article, and expanded upon it in his 1996 business
book, The Dilbert Principle.

See Also:

• The Peter Principle
• Putt’s Law

The Pareto Principle (The 80/20 Rule)

The Pareto Principle on Wikipedia

Most things in life are not distributed evenly.

The Pareto Principle suggests that in some cases, the majority of results come
from a minority of inputs:

• 80% of a certain piece of software can be written in 20% of the total
allocated time (conversely, the hardest 20% of the code takes 80% of the
time)

• 20% of the effort produces 80% of the result
• 20% of the work creates 80% of the revenue
• 20% of the bugs cause 80% of the crashes
• 20% of the features cause 80% of the usage

In the 1940s American-Romanian engineer Dr. Joseph Juran, who is widely
credited with being the father of quality control, began to apply the Pareto
principle to quality issues.

This principle is also known as: The 80/20 Rule, The Law of the Vital Few, and
The Principle of Factor Sparsity.

Real-world examples:

• In 2002 Microsoft reported that by fixing the top 20% of the most-reported
bugs, 80% of the related errors and crashes in windows and office would
become eliminated (Reference).

The Shirky Principle

The Shirky Principle explained

Institutions will try to preserve the problem to which they are the
solution.

Clay Shirky

The Shirky Principle suggests that complex solutions - a company, an industry, or
a technology - can become so focused on the problem that they are solving, that
they can inadvertently perpetuate the problem itself. This may be deliberate
(a company striving to find new nuances to a problem which justify continued

20

https://en.wikipedia.org/wiki/Pareto_principle
https://en.wikipedia.org/wiki/Joseph_M._Juran
https://en.wikipedia.org/wiki/Joseph_M._Juran
https://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
https://kk.org/thetechnium/the-shirky-prin/


development of a solution), or inadvertent (being unable or unwilling to accept
or build a solution which solves the problem completely or obviates it).

Related to:

• Upton Sinclair’s famous line, “It is difficult to get a man to understand
something, when his salary depends upon his not understanding it!”

• Clay Christensen’s The Innovator’s Dilemma

See also:

• Pareto Principle

The Peter Principle

The Peter Principle on Wikipedia

People in a hierarchy tend to rise to their “level of incompetence”.

Laurence J. Peter

A management concept developed by Laurence J. Peter, the Peter Principle
observes that people who are good at their jobs are promoted, until they reach
a level where they are no longer successful (their “level of incompetence”). At
this point, as they are more senior, they are less likely to be removed from
the organisation (unless they perform spectacularly badly) and will continue to
reside in a role which they have few intrinsic skills at, as their original skills
which made them successful are not necessarily the skills required for their new
jobs.

This is of particular interest to engineers - who initially start out in deeply
technical roles, but often have a career path which leads to managing other
engineers - which requires a fundamentally different skills-set.

See Also:

• The Dilbert Principle
• Putt’s Law

The Robustness Principle (Postel’s Law)

The Robustness Principle on Wikipedia

Be conservative in what you do, be liberal in what you accept from
others.

Often applied in server application development, this principle states that what
you send to others should be as minimal and conformant as possible, but you
should aim to allow non-conformant input if it can be processed.

The goal of this principle is to build systems which are robust, as they can
handle poorly formed input if the intent can still be understood. However, there
are potentially security implications of accepting malformed input, particularly

21

https://en.wikipedia.org/wiki/Peter_principle
https://en.wikipedia.org/wiki/Robustness_principle


if the processing of such input is not well tested. These implications and other
issues are described by Eric Allman in The Robustness Principle Reconsidered.

Allowing non-conformant input, in time, may undermine the ability of protocols
to evolve as implementors will eventually rely on this liberality to build their
features.

See Also:

• Hyrum’s Law

SOLID

This is an acronym, which refers to:

These are key principles in Object-Oriented Programming. Design principles
such as these should be able to aid developers build more maintainable systems.

The Single Responsibility Principle

The Single Responsibility Principle on Wikipedia

Every module or class should have a single responsibility only.

The first of the ‘SOLID’ principles. This principle suggests that modules or
classes should do one thing and one thing only. In more practical terms, this
means that a single, small change to a feature of a program should require
a change in one component only. For example, changing how a password is
validated for complexity should require a change in only one part of the program.

Theoretically, this should make the code more robust, and easier to change.
Knowing that a component which is being changed has a single responsibility
only means that testing that change should be easier. Using the earlier ex-
ample, changing the password complexity component should only be able to
affect the features which relate to password complexity. It can be much more
difficult to reason about the impact of a change to a component which has many
responsibilities.

See also:

• Object-Oriented Programming
• SOLID

The Open/Closed Principle

The Open/Closed Principle on Wikipedia

Entities should be open for extension and closed for modification.

The second of the ‘SOLID’ principles. This principle states that entities (which
could be classes, modules, functions and so on) should be able to have their

22

https://queue.acm.org/detail.cfm?id=1999945
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle


behaviour extended, but that their existing behaviour should not be able to be
modified.

As a hypothetical example, imagine a module which is able to turn a Markdown
document into HTML. Now imagine there is a new syntax added to the Markdown
specification, which adds support for mathematical equations. The module should
be open to extension to implement the new mathematics syntax. However,
existing syntax implementations (like paragraphs, bullets, etc) should be closed
for modification. They already work, we don’t want people to change them.

This principle has particular relevance for object-oriented programming, where
we may design objects to be easily extended, but would avoid designing objects
which can have their existing behaviour changed in unexpected ways.

See also:

• Object-Oriented Programming
• SOLID

The Liskov Substitution Principle

The Liskov Substitution Principle on Wikipedia

It should be possible to replace a type with a subtype, without
breaking the system.

The third of the ‘SOLID’ principles. This principle states that if a component
relies on a type, then it should be able to use subtypes of that type, without the
system failing or having to know the details of what that subtype is.

As an example, imagine we have a method which reads an XML document from
a structure which represents a file. If the method uses a base type ‘file’, then
anything which derives from ‘file’ should be able to be used in the function. If
‘file’ supports seeking in reverse, and the XML parser uses that function, but
the derived type ‘network file’ fails when reverse seeking is attempted, then the
‘network file’ would be violating the principle.

This principle has particular relevance for object-oriented programming, where
type hierarchies must be modeled carefully to avoid confusing users of a system.

See also:

• Object-Oriented Programming
• SOLID

The Interface Segregation Principle

The Interface Segregation Principle on Wikipedia

No client should be forced to depend on methods it does not use.

23

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle


The fourth of the ‘SOLID’ principles. This principle states that consumers of a
component should not depend on functions of that component which it doesn’t
actually use.

As an example, imagine we have a method which reads an XML document from
a structure which represents a file. It only needs to read bytes, move forwards
or move backwards in the file. If this method needs to be updated because
an unrelated feature of the file structure changes (such as an update to the
permissions model used to represent file security), then the principle has been
invalidated. It would be better for the file to implement a ‘seekable-stream’
interface, and for the XML reader to use that.

This principle has particular relevance for object-oriented programming, where
interfaces, hierarchies and abstract types are used to minimise the coupling
between different components. Duck typing is a methodology which enforces
this principle by eliminating explicit interfaces.

See also:

• Object-Oriented Programming
• SOLID
• Duck Typing
• Decoupling

The Dependency Inversion Principle

The Dependency Inversion Principle on Wikipedia

High-level modules should not be dependent on low-level implemen-
tations.

The fifth of the ‘SOLID’ principles. This principle states that higher level orches-
trating components should not have to know the details of their dependencies.

As an example, imagine we have a program which read metadata from a website.
We would assume that the main component would have to know about a
component to download the webpage content, then a component which can read
the metadata. If we were to take dependency inversion into account, the main
component would depend only on an abstract component which can fetch byte
data, and then an abstract component which would be able to read metadata
from a byte stream. The main component would not know about TCP/IP,
HTTP, HTML, etc.

This principle is complex, as it can seem to ‘invert’ the expected dependencies of a
system (hence the name). In practice, it also means that a separate orchestrating
component must ensure the correct implementations of abstract types are used
(e.g. in the previous example, something must still provide the metadata reader
component a HTTP file downloader and HTML meta tag reader). This then
touches on patterns such as Inversion of Control and Dependency Injection.

24

https://en.wikipedia.org/wiki/Dependency_inversion_principle


See also:

• Object-Oriented Programming
• SOLID
• Inversion of Control
• Dependency Injection

The DRY Principle

The DRY Principle on Wikipedia

Every piece of knowledge must have a single, unambiguous, authori-
tative representation within a system.

DRY is an acronym for Don’t Repeat Yourself. This principle aims to help
developers reducing the repetition of code and keep the information in a single
place and was cited in 1999 by Andrew Hunt and Dave Thomas in the book The
Pragmatic Developer

The opposite of DRY would be WET (Write Everything Twice or
We Enjoy Typing).

In practice, if you have the same piece of information in two (or more) different
places, you can use DRY to merge them into a single one and reuse it wherever
you want/need.

See also:

• The Pragmatic Developer

The KISS principle

KISS on Wikipedia

Keep it simple, stupid

The KISS principle states that most systems work best if they are kept simple
rather than made complicated; therefore, simplicity should be a key goal in design,
and unnecessary complexity should be avoided. Originating in the U.S. Navy in
1960, the phrase has been associated with aircraft engineer Kelly Johnson.

The principle is best exemplified by the story of Johnson handing a team of
design engineers a handful of tools, with the challenge that the jet aircraft they
were designing must be repairable by an average mechanic in the field under
combat conditions with only these tools. Hence, the “stupid” refers to the
relationship between the way things break and the sophistication of the tools
available to repair them, not the capabilities of the engineers themselves.

See also:

• Gall’s Law

25

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/The_Pragmatic_Programmer
https://en.wikipedia.org/wiki/The_Pragmatic_Programmer
https://en.wikipedia.org/wiki/The_Pragmatic_Programmer
https://en.wikipedia.org/wiki/KISS_principle


YAGNI

YAGNI on Wikipedia

Always implement things when you actually need them, never when
you just foresee that you need them.

(Ron Jeffries) (XP co-founder and author of the book “Extreme
Programming Installed”)

This Extreme Programming (XP) principle suggests developers should only
implement functionality that is needed for the immediate requirements, and
avoid attempts to predict the future by implementing functionality that might
be needed later.

Adhering to this principle should reduce the amount of unused code in the
codebase, and avoid time and effort being wasted on functionality that brings
no value.

See also:

• Reading List: Extreme Programming Installed

The Fallacies of Distributed Computing

The Fallacies of Distributed Computing on Wikipedia

Also known as Fallacies of Networked Computing, the Fallacies are a list of
conjectures (or beliefs) about distributed computing, which can lead to failures
in software development. The assumptions are:

• The network is reliable
• Latency is zero
• Bandwidth is infinite
• The network is secure
• Topology doesn’t change
• There is one administrator
• Transport cost is zero
• The network is homogeneous

The first four items were listed by Bill Joy and Tom Lyon around 1991 and first
classified by James Gosling as the “Fallacies of Networked Computing”. L. Peter
Deutsch added the 5th, 6th and 7th fallacies. In the late 90’s Gosling added the
8th fallacy.

The group was inspired by what was happening at the time inside Sun Microsys-
tems.

These fallacies should be considered carefully when designing code which is
resilient; assuming any of these fallacies can lead to flawed logic which fails to
deal with the realities and complexities of distributed systems.

26

https://en.wikipedia.org/wiki/You_ain%27t_gonna_need_it
https://twitter.com/RonJeffries
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Bill_Joy
https://twitter.com/aka_pugs
https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/L._Peter_Deutsch
https://en.wikipedia.org/wiki/L._Peter_Deutsch
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_Microsystems


See also:

• Foraging for the Fallacies of Distributed Computing (Part 1) - Vaidehi
Joshi on Medium

Reading List
If you have found these concepts interesting, you may enjoy the following books.

• Extreme Programming Installed - Ron Jeffries, Ann Anderson, Chet Hen-
drikson - Covers the core principles of Extreme Programming.

• The Mythical Man Month - Frederick P. Brooks Jr. - A classic volume on
software engineering. Brooks’ Law is a central theme of the book.

• Gödel, Escher, Bach: An Eternal Golden Braid - Douglas R. Hofstadter. -
This book is difficult to classify. Hofstadter’s Law is from the book.

• The Cathedral and the Bazaar - Eric S. Raymond - a collection of essays
on open source. This book was the source of Linus’s Law.

• The Dilbert Principle - Scott Adams - A comic look at corporate America,
from the author who created the Dilbert Principle.

• The Peter Principle - Lawrence J. Peter - Another comic look at the
challenges of larger organisations and people management, the source of
The Peter Principle.

• Structure and Interpretation of Computer Programs - Harold Abelson,
Gerald Jay Sussman, Julie Sussman - If you were a comp sci or electical en-
gineering student at MIT or Cambridge this was your intro to programming.
Widely reported as being a turning point in people’s lives.

Online Resources
Some useful resources and reading.

• CB Insights: 8 Laws Driving Success In Tech: Amazon’s 2-Pizza Rule, The
80/20 Principle, & More - an interesting write up of some laws which have
been highly influential in technology.

PDF eBook
The project is available as a PDF eBook, download the latest PDF eBook with
this link or check the release page for older versions.

Podcast
Hacker Laws has been featured in The Changelog, you can check out the Podcast
episode with the link below:

27

https://medium.com/baseds/foraging-for-the-fallacies-of-distributed-computing-part-1-1b35c3b85b53
https://medium.com/baseds/foraging-for-the-fallacies-of-distributed-computing-part-1-1b35c3b85b53
https://www.goodreads.com/en/book/show/67834
https://www.goodreads.com/en/book/show/67834
https://www.goodreads.com/book/show/13629.The_Mythical_Man_Month
https://www.goodreads.com/book/show/24113.G_del_Escher_Bach
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://www.goodreads.com/book/show/85574.The_Dilbert_Principle
https://www.goodreads.com/book/show/890728.The_Peter_Principle
https://www.goodreads.com/book/show/43713
https://www.goodreads.com/book/show/43713
https://www.cbinsights.com/research/report/tech-laws-success-failure
https://www.cbinsights.com/research/report/tech-laws-success-failure
https://github.com/dwmkerr/hacker-laws/releases/latest/download/hacker-laws.pdf
https://github.com/dwmkerr/hacker-laws/releases/latest/download/hacker-laws.pdf
https://github.com/dwmkerr/hacker-laws/releases
https://changelog.com/podcast/403

	Introduction
	Laws
	90–9–1 Principle (1% Rule)
	Amdahl's Law
	The Broken Windows Theory
	Brooks' Law
	CAP Theorem (Brewer's Theorem)
	Conway's Law
	Cunningham's Law
	Dunbar's Number
	Fitts' Law
	Gall's Law
	Goodhart's Law
	Hanlon's Razor
	Hick's Law (Hick-Hyman Law)
	Hofstadter's Law
	Hutber's Law
	The Hype Cycle & Amara's Law
	Hyrum's Law (The Law of Implicit Interfaces)
	Kernighan's Law
	Linus's Law
	Metcalfe's Law
	Moore's Law
	Murphy's Law / Sod's Law
	Occam's Razor
	Parkinson's Law
	Premature Optimization Effect
	Putt's Law
	Reed's Law
	The Law of Conservation of Complexity (Tesler's Law)
	The Law of Demeter
	The Law of Leaky Abstractions
	The Law of Triviality
	The Unix Philosophy
	The Spotify Model
	The Two Pizza Rule
	Wadler's Law
	Wheaton's Law

	Principles
	All Models Are Wrong (George Box's Law)
	Chesterson's Fence
	The Dead Sea Effect
	The Dilbert Principle
	The Pareto Principle (The 80/20 Rule)
	The Shirky Principle
	The Peter Principle
	The Robustness Principle (Postel's Law)
	SOLID
	The Single Responsibility Principle
	The Open/Closed Principle
	The Liskov Substitution Principle
	The Interface Segregation Principle
	The Dependency Inversion Principle
	The DRY Principle
	The KISS principle
	YAGNI
	The Fallacies of Distributed Computing

	Reading List
	Online Resources
	PDF eBook
	Podcast

