forked from lumapu/ahoy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNrfRadio.h
458 lines (400 loc) · 19.8 KB
/
NrfRadio.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//-----------------------------------------------------------------------------
// 2024 Ahoy, https://github.com/lumpapu/ahoy
// Creative Commons - http://creativecommons.org/licenses/by-nc-sa/4.0/deed
//-----------------------------------------------------------------------------
#ifndef __HM_RADIO_H__
#define __HM_RADIO_H__
#include <RF24.h>
#include "SPI.h"
#include "Radio.h"
#include "../config/config.h"
#include "../config/settings.h"
#if defined(SPI_HAL)
#include "nrfHal.h"
#endif
#define SPI_SPEED 1000000
#define RF_CHANNELS 5
const char* const rf24AmpPowerNames[] = {"MIN", "LOW", "HIGH", "MAX"};
#define TX_REQ_DREDCONTROL 0x50
#define DRED_A5 0xa5
#define DRED_5A 0x5a
#define DRED_AA 0xaa
#define DRED_55 0x55
//-----------------------------------------------------------------------------
// HM Radio class
//-----------------------------------------------------------------------------
template <uint32_t DTU_SN = 0x81001765>
class NrfRadio : public Radio {
public:
NrfRadio() {
mDtuSn = DTU_SN;
mIrqRcvd = false;
#if defined(SPI_HAL)
//mNrf24.reset(new RF24());
#else
mNrf24.reset(new RF24(DEF_NRF_CE_PIN, DEF_NRF_CS_PIN, SPI_SPEED));
#endif
}
~NrfRadio() {}
void setup(bool *serialDebug, bool *privacyMode, bool *printWholeTrace, cfgNrf24_t *cfg) {
DPRINTLN(DBG_VERBOSE, F("NrfRadio::setup"));
mCfg = cfg;
//uint8_t irq = IRQ_PIN, uint8_t ce = CE_PIN, uint8_t cs = CS_PIN, uint8_t sclk = SCLK_PIN, uint8_t mosi = MOSI_PIN, uint8_t miso = MISO_PIN
if(!mCfg->enabled)
return;
pinMode(mCfg->pinIrq, INPUT_PULLUP);
mSerialDebug = serialDebug;
mPrivacyMode = privacyMode;
mPrintWholeTrace = printWholeTrace;
generateDtuSn();
mDtuRadioId = ((uint64_t)(((mDtuSn >> 24) & 0xFF) | ((mDtuSn >> 8) & 0xFF00) | ((mDtuSn << 8) & 0xFF0000) | ((mDtuSn << 24) & 0xFF000000)) << 8) | 0x01;
#ifdef ESP32
#if defined(SPI_HAL)
mNrfHal.init(mCfg->pinMosi, mCfg->pinMiso, mCfg->pinSclk, mCfg->pinCs, mCfg->pinCe, SPI_SPEED);
mNrf24.reset(new RF24(&mNrfHal));
#else
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
mSpi.reset(new SPIClass(HSPI));
#else
mSpi.reset(new SPIClass(VSPI));
#endif
mSpi->begin(mCfg->pinSclk, mCfg->pinMiso, mCfg->pinMosi, mCfg->pinCs);
#endif
#else
//the old ESP82xx cannot freely place their SPI pins
mSpi.reset(new SPIClass());
mSpi->begin();
#endif
#if defined(SPI_HAL)
mNrf24->begin();
#else
mNrf24->begin(mSpi.get(), mCfg->pinCe, mCfg->pinCs);
#endif
mNrf24->setRetries(3, 15); // wait 3*250 = 750us, 16 * 250us -> 4000us = 4ms
mNrf24->setDataRate(RF24_250KBPS);
//mNrf24->setAutoAck(true); // enabled by default
//mNrf24->enableDynamicAck();
mNrf24->enableDynamicPayloads();
mNrf24->setCRCLength(RF24_CRC_16);
mNrf24->setAddressWidth(5);
mNrf24->openReadingPipe(1, reinterpret_cast<uint8_t*>(&mDtuRadioId));
mNrf24->maskIRQ(false, false, false); // enable all receiving interrupts
mNrf24->setPALevel(1); // low is default
if(mNrf24->isChipConnected()) {
DPRINTLN(DBG_INFO, F("Radio Config:"));
mNrf24->printPrettyDetails();
DPRINT(DBG_INFO, F("DTU_SN: "));
DBGPRINTLN(String(mDtuSn, HEX));
} else
DPRINTLN(DBG_WARN, F("WARNING! your NRF24 module can't be reached, check the wiring"));
}
// returns true if communication is active
void loop(void) {
if(!mCfg->enabled)
return;
if (!mIrqRcvd && !mNRFisInRX)
return; // first quick check => nothing to do at all here
if(NULL == mLastIv) // prevent reading on NULL object!
return;
if(!mIrqRcvd) { // no news from nRF, check timers
if ((millis() - mTimeslotStart) < innerLoopTimeout)
return; // nothing to do, still waiting
if (mRadioWaitTime.isTimeout()) { // timeout reached!
mNRFisInRX = false;
rx_ready = false;
return;
}
// otherwise switch to next RX channel
mTimeslotStart = millis();
if(!mNRFloopChannels && ((mTimeslotStart - mLastIrqTime) > (DURATION_TXFRAME))) //(DURATION_TXFRAME+DURATION_ONEFRAME)))
mNRFloopChannels = true;
mRxPendular = !mRxPendular;
innerLoopTimeout = DURATION_LISTEN_MIN;
if(mNRFloopChannels)
tempRxChIdx = (tempRxChIdx + 4) % RF_CHANNELS;
else
tempRxChIdx = (mRxChIdx + mRxPendular*4) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[tempRxChIdx]);
isRxInit = false;
return; // communicating, but changed RX channel
} else {
// here we got news from the nRF
mIrqRcvd = false;
mNrf24->whatHappened(tx_ok, tx_fail, rx_ready); // resets the IRQ pin to HIGH
mLastIrqTime = millis();
if(tx_ok || tx_fail) { // tx related interrupt, basically we should start listening
mNrf24->flush_tx(); // empty TX FIFO
//mTxSetupTime = millis() - mMillis;
if(mNRFisInRX) {
DPRINTLN(DBG_WARN, F("unexpected tx irq!"));
return;
}
mNRFisInRX = true;
if(tx_ok)
mLastIv->mAckCount++;
rxOffset = mLastIv->ivGen == IV_HM ? 3 : 2; // holds the default channel offset between tx and rx channel (nRF only)
mRxChIdx = (mTxChIdx + rxOffset) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[mRxChIdx]);
mNrf24->startListening();
mTimeslotStart = millis();
tempRxChIdx = mRxChIdx; // might be better to start off with one channel less?
mRxPendular = false;
mNRFloopChannels = (mLastIv->mCmd == MI_REQ_CH1 || mLastIv->mCmd == MI_REQ_CH2);
innerLoopTimeout = DURATION_LISTEN_MIN;
}
if(rx_ready) {
if (getReceived()) { // check what we got, returns true for last package or success for single frame request
mNRFisInRX = false;
mRadioWaitTime.startTimeMonitor(DURATION_PAUSE_LASTFR); // let the inverter first end his transmissions
mNrf24->stopListening();
} else {
innerLoopTimeout = DURATION_LISTEN_MIN;
mTimeslotStart = millis();
if (!mNRFloopChannels) {
if (isRxInit) {
isRxInit = false;
tempRxChIdx = (mRxChIdx + 4) % RF_CHANNELS;
mNrf24->setChannel(mRfChLst[tempRxChIdx]);
} else
mRxChIdx = tempRxChIdx;
}
}
rx_ready = false; // reset
return;
}
}
return;
}
bool isChipConnected(void) const override {
if(!mCfg->enabled)
return false;
return mNrf24->isChipConnected();
}
void sendControlPacket(Inverter<> *iv, uint8_t cmd, uint16_t *data, bool isRetransmit) override {
if(!mCfg->enabled)
return;
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("sendControlPacket cmd: "));
DBGHEXLN(cmd);
initPacket(iv->radioId.u64, TX_REQ_DEVCONTROL, SINGLE_FRAME);
uint8_t cnt = 10;
if (IV_MI != iv->ivGen) {
mTxBuf[cnt++] = cmd; // cmd -> 0 on, 1 off, 2 restart, 11 active power, 12 reactive power, 13 power factor
mTxBuf[cnt++] = 0x00;
if(cmd >= ActivePowerContr && cmd <= PFSet) { // ActivePowerContr, ReactivePowerContr, PFSet
mTxBuf[cnt++] = (data[0] >> 8) & 0xff; // power limit, multiplied by 10 (because of fraction)
mTxBuf[cnt++] = (data[0] ) & 0xff; // power limit
mTxBuf[cnt++] = (data[1] >> 8) & 0xff; // setting for persistens handlings
mTxBuf[cnt++] = (data[1] ) & 0xff; // setting for persistens handling
}
} else { //MI 2nd gen. specific
uint16_t powerMax = ((iv->powerLimit[1] == RelativNonPersistent) ? 0 : iv->getMaxPower());
switch (cmd) {
case Restart:
case TurnOn:
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
break;
case TurnOff:
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
break;
case ActivePowerContr:
if (data[1]<256) { // non persistent
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
//Testing only! Original NRF24_DTUMIesp.ino code #L612-L613:
//UsrData[0]=0x5A;UsrData[1]=0x5A;UsrData[2]=100;//0x0a;// 10% limit
//UsrData[3]=((Limit*10) >> 8) & 0xFF; UsrData[4]= (Limit*10) & 0xFF; //WR needs 1 dec= zB 100.1 W
if (!data[1]) { // AbsolutNonPersistent
mTxBuf[++cnt] = 100; //10% limit, seems to be necessary to send sth. at all, but for MI-1500 this has no effect
//works (if ever!) only for absulute power limits!
mTxBuf[++cnt] = ((data[0] * 10) >> 8) & 0xff; // power limit in W
mTxBuf[++cnt] = ((data[0] * 10) ) & 0xff; // power limit in W
} else if (powerMax) { //relative, but 4ch-MI (if ever) only accepts absolute values
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) >> 8) & 0xff; // power limit
mTxBuf[++cnt] = ((data[0] * 10 * powerMax) ) & 0xff; // power limit
} else { // might work for 1/2ch MI (if ever)
mTxBuf[++cnt] = data[0]; // simple power limit in %, might be necessary to multiply by 10?
}
} else { // persistent power limit needs to be translated in DRED command (?)
/* DRED instruction
Order Function
0x55AA Boot without DRM restrictions
0xA5A5 DRM0 shutdown
0x5A5A DRM5 power limit 0%
0xAA55 DRM6 power limit 50%
0x5A55 DRM8 unlimited power operation
*/
mTxBuf[0] = TX_REQ_DREDCONTROL;
if (data[1] == 256UL) { // AbsolutPersistent
if (data[0] == 0 && !powerMax) {
mTxBuf[9] = DRED_A5;
mTxBuf[10] = DRED_A5;
} else if (data[0] == 0 || !powerMax || data[0] < powerMax/4 ) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_5A;
} else if (data[0] <= powerMax/4*3) {
mTxBuf[9] = DRED_AA;
mTxBuf[10] = DRED_55;
} else if (data[0] <= powerMax) {
mTxBuf[9] = DRED_5A;
mTxBuf[10] = DRED_55;
} else if (data[0] > powerMax*2) {
mTxBuf[9] = DRED_55;
mTxBuf[10] = DRED_AA;
}
}
}
break;
default:
return;
}
cnt++;
}
sendPacket(iv, cnt, isRetransmit, (IV_MI != iv->ivGen));
}
uint8_t getDataRate(void) const {
if(!isChipConnected())
return 3; // unknown
return mNrf24->getDataRate();
}
bool isPVariant(void) const {
if(!isChipConnected())
return mNrf24->isPVariant();
}
private:
inline bool getReceived(void) {
bool isLastPackage = false;
bool isRetransmitAnswer = false;
rx_ready = false; // reset for ACK case
while(mNrf24->available()) {
uint8_t len = mNrf24->getDynamicPayloadSize(); // payload size > 32 -> corrupt payload
if (len > 0) {
packet_t p;
p.ch = mRfChLst[tempRxChIdx];
p.len = (len > MAX_RF_PAYLOAD_SIZE) ? MAX_RF_PAYLOAD_SIZE : len;
p.rssi = mNrf24->testRPD() ? -64 : -75;
p.millis = millis() - mMillis;
mNrf24->read(p.packet, p.len);
if (p.packet[0] != 0x00) {
if(!checkIvSerial(p.packet, mLastIv)) {
DPRINT(DBG_WARN, F("RX other inverter "));
if(!*mPrivacyMode)
ah::dumpBuf(p.packet, p.len);
else
DBGPRINTLN(F(""));
} else {
mLastIv->mGotFragment = true;
mBufCtrl.push(p);
if (p.packet[0] == (TX_REQ_INFO + ALL_FRAMES)) { // response from get information command
isLastPackage = (p.packet[9] > ALL_FRAMES); // > ALL_FRAMES indicates last packet received
if(mLastIv->mIsSingleframeReq) // we only expect one frame here...
isRetransmitAnswer = true;
if(isLastPackage)
setExpectedFrames(p.packet[9] - ALL_FRAMES);
}
if(IV_MI == mLastIv->ivGen) {
if (p.packet[0] == (0x0f + ALL_FRAMES)) // response from MI get information command
isLastPackage = (p.packet[9] > 0x10); // > 0x10 indicates last packet received
else if ((p.packet[0] != 0x88) && (p.packet[0] != 0x92)) // ignore MI status messages //#0 was p.packet[0] != 0x00 &&
isLastPackage = true; // response from dev control command
}
rx_ready = true; //reset in case we first read messages from other inverter or ACK zero payloads
}
}
}
yield();
}
if(isLastPackage)
mLastIv->mGotLastMsg = true;
return isLastPackage || isRetransmitAnswer;
}
void sendPacket(Inverter<> *iv, uint8_t len, bool isRetransmit, bool appendCrc16=true) {
mNrf24->setPALevel(iv->config->powerLevel & 0x03);
updateCrcs(&len, appendCrc16);
// set TX and RX channels
mTxChIdx = iv->heuristics.txRfChId;
if(*mSerialDebug) {
/*if(!isRetransmit) {
DPRINT(DBG_INFO, "last tx setup: ");
DBGPRINT(String(mTxSetupTime));
DBGPRINTLN("ms");
}*/
DPRINT_IVID(DBG_INFO, iv->id);
DBGPRINT(F("TX "));
DBGPRINT(String(len));
DBGPRINT(" CH");
if(mTxChIdx == 0)
DBGPRINT("0");
DBGPRINT(String(mRfChLst[mTxChIdx]));
DBGPRINT(F(", "));
DBGPRINT(String(mTxRetriesNext));
DBGPRINT(F(" ret. | "));
if(*mPrintWholeTrace) {
if(*mPrivacyMode)
ah::dumpBuf(mTxBuf.data(), len, 1, 4);
else
ah::dumpBuf(mTxBuf.data(), len);
} else {
DHEX(mTxBuf[0]);
DBGPRINT(F(" "));
DHEX(mTxBuf[10]);
DBGPRINT(F(" "));
DBGHEXLN(mTxBuf[9]);
}
}
mNrf24->stopListening();
mNrf24->flush_rx();
if(!isRetransmit && (mTxRetries != mTxRetriesNext)) {
mNrf24->setRetries(3, mTxRetriesNext);
mTxRetries = mTxRetriesNext;
}
mNrf24->setChannel(mRfChLst[mTxChIdx]);
mNrf24->openWritingPipe(reinterpret_cast<uint8_t*>(&iv->radioId.u64));
mNrf24->startFastWrite(mTxBuf.data(), len, false, true); // false (3) = request ACK response; true (4) reset CE to high after transmission
mMillis = millis();
mLastIv = iv;
iv->mDtuTxCnt++;
mNRFisInRX = false;
}
uint64_t getIvId(Inverter<> *iv) const override {
return iv->radioId.u64;
}
uint8_t getIvGen(Inverter<> *iv) const override {
return iv->ivGen;
}
inline bool checkIvSerial(const uint8_t buf[], Inverter<> *iv) {
for(uint8_t i = 1; i < 5; i++) {
if(buf[i] != iv->radioId.b[i])
return false;
}
return true;
}
uint64_t mDtuRadioId = 0ULL;
cfgNrf24_t *mCfg = nullptr;
const uint8_t mRfChLst[RF_CHANNELS] = {03, 23, 40, 61, 75}; // channel List:2403, 2423, 2440, 2461, 2475MHz
uint8_t mTxChIdx = 0;
uint8_t mRxChIdx = 0;
uint8_t tempRxChIdx = 0;
bool mGotLastMsg = false;
uint32_t mMillis = 0;
bool tx_ok = false, tx_fail = false, rx_ready = false;
unsigned long mTimeslotStart = 0;
unsigned long mLastIrqTime = 0;
bool mNRFloopChannels = false;
bool mNRFisInRX = false;
bool isRxInit = true;
bool mRxPendular = false;
uint32_t innerLoopTimeout = DURATION_LISTEN_MIN;
uint8_t mTxRetries = 15; // memorize last setting for mNrf24->setRetries(3, 15);
uint8_t rxOffset = 3; // holds the channel offset between tx and rx channel used for actual inverter
std::unique_ptr<SPIClass> mSpi;
std::unique_ptr<RF24> mNrf24;
#if defined(SPI_HAL)
nrfHal mNrfHal;
#endif
Inverter<> *mLastIv = NULL;
};
#endif /*__HM_RADIO_H__*/