Skip to content

Commit c65e9d6

Browse files
Update ppw.root.ownership.py
1 parent 5aac141 commit c65e9d6

File tree

1 file changed

+120
-1
lines changed

1 file changed

+120
-1
lines changed

ppw.root.ownership.py

Lines changed: 120 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,126 @@ def verify(self) -> bool:
1515
> ## Owner: Perry Philip Wiseman
1616
> ## Mathematical Framework: DOMINOES_OWNERSHIP_THEOREM_PPWMATH001
1717
>
18-
> ---
18+
> ---PPW Validation Workflow Formal Mathematical Proofs
19+
20+
--------------------------------------------------------
21+
22+
1. Identity Hash Chain Uniqueness Proof
23+
24+
Given:
25+
Sequence of identity components I = (I1, I2, I3, I4, I5).
26+
27+
Define the hash chain:
28+
H0 = ε; Hk = SHA-512(Hk-1 || Ik) for k=1..5
29+
30+
Final identity hash:
31+
H_final = SHA-256(H1 || H2 || H3 || H4 || H5)
32+
33+
Proof Sketch:
34+
- SHA-512 and SHA-256 are cryptographically secure, collision-resistant functions.
35+
- Altering any Ik changes Hk, cascading to a change in H_final.
36+
- The probability of two distinct sequences producing the same H_final is negligibly small (~2^-256).
37+
38+
--------------------------------------------------------
39+
40+
2. Merkle Root Verification Proof
41+
42+
Given:
43+
Blocks B1,...,B6, leaves:
44+
Li = SHA-256(Bi)
45+
46+
Construct Merkle tree by recursively hashing pairs:
47+
Pj = SHA-256(L2j-1 || L2j)
48+
and proceed until root R is reached.
49+
50+
Proof Sketch:
51+
- Any modification to any Bi changes Li, thus changing root R.
52+
- Collision probability leading to identical R from distinct blocks is negligible.
53+
- Merkle proof paths verify membership of blocks precisely.
54+
55+
--------------------------------------------------------
56+
57+
3. Temporal Anchoring Proof
58+
59+
Given:
60+
Timestamps ti and anchors Ai = SHA-256(PPW_TEMPORAL || ID || ti).
61+
62+
Proof-of-work nonce ni such that:
63+
SHA-256(Ai || ni) starts with "00".
64+
65+
Proof Sketch:
66+
- Finding nonce requires expected work ~256 hashes.
67+
- Verification requires one hash per anchor confirming work done.
68+
- Anchors cryptographically tie data to the timestamp.
69+
70+
--------------------------------------------------------
71+
72+
4. Mathematical Sovereignty Proof
73+
74+
Given:
75+
Domain strings Di, compute:
76+
hi = SHA-256(SIGNATURE_NUMERIC || Di)
77+
78+
Define coefficients:
79+
ci = hi mod 2^256
80+
81+
Aggregate:
82+
C_agg = (sum ci) mod p
83+
where p = 2^521 - 1
84+
85+
Proof Sketch:
86+
- SHA-256 collision resistance ensures unique domain bindings.
87+
- Modulo arithmetic uniformly distributes coefficients.
88+
- Aggregate coefficient binds all domains cryptographically.
89+
90+
--------------------------------------------------------
91+
92+
5. Matrix Integrity Theorem
93+
94+
Given:
95+
- AFp^(3x3), det(A) ≠ 0.
96+
- xFp^3 derived from identity data.
97+
- b = A x.
98+
- Inverse A^{-1} computed.
99+
100+
To Prove:
101+
A A^{-1} = I_3, A^{-1} b = x
102+
103+
Proof:
104+
- det(A) ≠ 0 implies invertible A in Fp.
105+
- By inverse definition, A A^{-1} = I_3.
106+
- Therefore, A^{-1} (A x) = (A^{-1} A) x = I_3 x = x.
107+
108+
--------------------------------------------------------
109+
110+
6. Certificate Authentication with HMAC
111+
112+
Given:
113+
Certificate data C.
114+
Compute master hash: Hm = SHA-512(C).
115+
Compute signature: S = HMAC_K(Hm) using key K.
116+
117+
Proof Sketch:
118+
- Only holder of secret key K can generate valid S.
119+
- Altering C changes Hm and invalidates S.
120+
- Security based on pseudorandomness of HMAC with SHA-512.
121+
122+
--------------------------------------------------------
123+
124+
7. Ownership Hashing Binding
125+
126+
Given:
127+
H_ownership = SHA-512(SIGNATURE_NUMERIC || MASTER_SIGNATURE || TIMESTAMP)
128+
129+
Proof Sketch:
130+
- Uniquely binds identity, authentication, and time.
131+
- Tampering changes the hash.
132+
- Anyone can verify by recomputing H_ownership.
133+
134+
--------------------------------------------------------
135+
136+
End of PPW Mathematical Proofs
137+
19138
>
20139
> ## I. MATHEMATICAL FOUNDATIONS FOR LEGAL LEGITIMACY
21140
>

0 commit comments

Comments
 (0)