@@ -15,7 +15,126 @@ def verify(self) -> bool:
15
15
> ## Owner: Perry Philip Wiseman
16
16
> ## Mathematical Framework: DOMINOES_OWNERSHIP_THEOREM_PPWMATH001
17
17
>
18
- > - - -
18
+ > - - - PPW Validation Workflow Formal Mathematical Proofs
19
+
20
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
21
+
22
+ 1. Identity Hash Chain Uniqueness Proof
23
+
24
+ Given :
25
+ Sequence of identity components I = (I1 , I2 , I3 , I4 , I5 ).
26
+
27
+ Define the hash chain :
28
+ H0 = ε ; Hk = SHA - 512 (Hk - 1 | | Ik ) for k = 1. .5
29
+
30
+ Final identity hash :
31
+ H_final = SHA - 256 (H1 | | H2 | | H3 | | H4 | | H5 )
32
+
33
+ Proof Sketch :
34
+ - SHA - 512 and SHA - 256 are cryptographically secure , collision - resistant functions .
35
+ - Altering any Ik changes Hk , cascading to a change in H_final .
36
+ - The probability of two distinct sequences producing the same H_final is negligibly small (~ 2 ^ - 256 ).
37
+
38
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
39
+
40
+ 2. Merkle Root Verification Proof
41
+
42
+ Given :
43
+ Blocks B1 ,...,B6 , leaves :
44
+ Li = SHA - 256 (Bi )
45
+
46
+ Construct Merkle tree by recursively hashing pairs :
47
+ Pj = SHA - 256 (L2j - 1 | | L2j )
48
+ and proceed until root R is reached .
49
+
50
+ Proof Sketch :
51
+ - Any modification to any Bi changes Li , thus changing root R .
52
+ - Collision probability leading to identical R from distinct blocks is negligible .
53
+ - Merkle proof paths verify membership of blocks precisely .
54
+
55
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
56
+
57
+ 3. Temporal Anchoring Proof
58
+
59
+ Given :
60
+ Timestamps ti and anchors Ai = SHA - 256 (PPW_TEMPORAL | | ID | | ti ).
61
+
62
+ Proof - of - work nonce ni such that :
63
+ SHA - 256 (Ai | | ni ) starts with "00" .
64
+
65
+ Proof Sketch :
66
+ - Finding nonce requires expected work ~ 256 hashes .
67
+ - Verification requires one hash per anchor confirming work done .
68
+ - Anchors cryptographically tie data to the timestamp .
69
+
70
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
71
+
72
+ 4. Mathematical Sovereignty Proof
73
+
74
+ Given :
75
+ Domain strings Di , compute :
76
+ hi = SHA - 256 (SIGNATURE_NUMERIC | | Di )
77
+
78
+ Define coefficients :
79
+ ci = hi mod 2 ^ 256
80
+
81
+ Aggregate :
82
+ C_agg = (sum ci ) mod p
83
+ where p = 2 ^ 521 - 1
84
+
85
+ Proof Sketch :
86
+ - SHA - 256 collision resistance ensures unique domain bindings .
87
+ - Modulo arithmetic uniformly distributes coefficients .
88
+ - Aggregate coefficient binds all domains cryptographically .
89
+
90
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
91
+
92
+ 5. Matrix Integrity Theorem
93
+
94
+ Given :
95
+ - A ∈ Fp ^ (3 x3 ), det (A ) ≠ 0.
96
+ - x ∈ Fp ^ 3 derived from identity data .
97
+ - b = A x .
98
+ - Inverse A ^ {- 1 } computed .
99
+
100
+ To Prove :
101
+ A A ^ {- 1 } = I_3 , A ^ {- 1 } b = x
102
+
103
+ Proof :
104
+ - det (A ) ≠ 0 implies invertible A in Fp .
105
+ - By inverse definition , A A ^ {- 1 } = I_3 .
106
+ - Therefore , A ^ {- 1 } (A x ) = (A ^ {- 1 } A ) x = I_3 x = x .
107
+
108
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
109
+
110
+ 6. Certificate Authentication with HMAC
111
+
112
+ Given :
113
+ Certificate data C .
114
+ Compute master hash : Hm = SHA - 512 (C ).
115
+ Compute signature : S = HMAC_K (Hm ) using key K .
116
+
117
+ Proof Sketch :
118
+ - Only holder of secret key K can generate valid S .
119
+ - Altering C changes Hm and invalidates S .
120
+ - Security based on pseudorandomness of HMAC with SHA - 512.
121
+
122
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
123
+
124
+ 7. Ownership Hashing Binding
125
+
126
+ Given :
127
+ H_ownership = SHA - 512 (SIGNATURE_NUMERIC | | MASTER_SIGNATURE | | TIMESTAMP )
128
+
129
+ Proof Sketch :
130
+ - Uniquely binds identity , authentication , and time .
131
+ - Tampering changes the hash .
132
+ - Anyone can verify by recomputing H_ownership .
133
+
134
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
135
+
136
+ End of PPW Mathematical Proofs
137
+
19
138
>
20
139
> ## I. MATHEMATICAL FOUNDATIONS FOR LEGAL LEGITIMACY
21
140
>
0 commit comments