|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Theano 变量:随机数流" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": { |
| 14 | + "collapsed": false |
| 15 | + }, |
| 16 | + "outputs": [ |
| 17 | + { |
| 18 | + "name": "stderr", |
| 19 | + "output_type": "stream", |
| 20 | + "text": [ |
| 21 | + "Using gpu device 1: Tesla C2075 (CNMeM is disabled)\n" |
| 22 | + ] |
| 23 | + } |
| 24 | + ], |
| 25 | + "source": [ |
| 26 | + "import theano\n", |
| 27 | + "import theano.tensor as T\n", |
| 28 | + "import numpy as np" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "`Theano` 的随机数流由 `theano.sandbox.rng_mrg` 中的 `MRG_RandomStreams` 实现(`sandbox` 表示是实验代码):" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 2, |
| 41 | + "metadata": { |
| 42 | + "collapsed": true |
| 43 | + }, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "from theano.sandbox.rng_mrg import MRG_RandomStreams" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "markdown", |
| 51 | + "metadata": {}, |
| 52 | + "source": [ |
| 53 | + "新建一个 `MRG_RandomStreams(seed=12345, use_cuda=None)` 实例:" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": 3, |
| 59 | + "metadata": { |
| 60 | + "collapsed": true |
| 61 | + }, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "srng = MRG_RandomStreams()" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "它支持以下方法:\n", |
| 72 | + "\n", |
| 73 | + "- `normal(size, avg=0.0, std=1.0, ndim=None, dtype=None, nstreams=None)` \n", |
| 74 | + " - 产生指定形状的、服从正态分布 $N(avg, std)$ 的随机数变量,默认为标准正态分布 \n", |
| 75 | + "- `uniform(size, low=0.0, high=1.0, ndim=None, dtype=None, nstreams=None)`\n", |
| 76 | + " - 产生指定形状的、服从均匀分布 $U(low, high)$ 的随机数变量,默认为 0-1 之间的均匀分布\n", |
| 77 | + "- `binomial(size=None, n=1, p=0.5, ndim=None, dtype='int64', nstreams=None)`\n", |
| 78 | + " - 产生指定形状的、服从二项分布 $B(n,p)$ 的随机数变量\n", |
| 79 | + "- `multinomial(size=None, n=1, pvals=None, ndim=None, dtype='int64', nstreams=None)`\n", |
| 80 | + " - 产生指定形状的、服从多项分布的随机数变量\n", |
| 81 | + "\n", |
| 82 | + "与 np.random.random 不同,它产生的是随机数变量,而不是随机数数组:" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 4, |
| 88 | + "metadata": { |
| 89 | + "collapsed": false |
| 90 | + }, |
| 91 | + "outputs": [ |
| 92 | + { |
| 93 | + "name": "stdout", |
| 94 | + "output_type": "stream", |
| 95 | + "text": [ |
| 96 | + "[ 0.10108768 -1.64354193 0.71042836 -0.77760422 0.06291872]\n", |
| 97 | + "[ 0.23193923 0.71880513 0.03122572 0.97318739 0.99260223]\n", |
| 98 | + "[0 1 0 1 1]\n" |
| 99 | + ] |
| 100 | + } |
| 101 | + ], |
| 102 | + "source": [ |
| 103 | + "rand_size = T.vector(dtype=\"int64\")\n", |
| 104 | + "\n", |
| 105 | + "rand_normal = srng.normal(rand_size.shape)\n", |
| 106 | + "rand_uniform = srng.uniform(rand_size.shape)\n", |
| 107 | + "rand_binomial = srng.binomial(rand_size.shape)\n", |
| 108 | + "\n", |
| 109 | + "f_rand = theano.function(inputs = [rand_size], \n", |
| 110 | + " outputs = [rand_normal, rand_uniform, rand_binomial])\n", |
| 111 | + "\n", |
| 112 | + "print f_rand(range(5))[0]\n", |
| 113 | + "print f_rand(range(5))[1]\n", |
| 114 | + "print f_rand(range(5))[2]" |
| 115 | + ] |
| 116 | + } |
| 117 | + ], |
| 118 | + "metadata": { |
| 119 | + "kernelspec": { |
| 120 | + "display_name": "Python 2", |
| 121 | + "language": "python", |
| 122 | + "name": "python2" |
| 123 | + }, |
| 124 | + "language_info": { |
| 125 | + "codemirror_mode": { |
| 126 | + "name": "ipython", |
| 127 | + "version": 2 |
| 128 | + }, |
| 129 | + "file_extension": ".py", |
| 130 | + "mimetype": "text/x-python", |
| 131 | + "name": "python", |
| 132 | + "nbconvert_exporter": "python", |
| 133 | + "pygments_lexer": "ipython2", |
| 134 | + "version": "2.7.6" |
| 135 | + } |
| 136 | + }, |
| 137 | + "nbformat": 4, |
| 138 | + "nbformat_minor": 0 |
| 139 | +} |
0 commit comments