|
| 1 | +### 常见基础排序算法 |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | +#### 排序算法分类 |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | +#### 时间复杂度 |
| 11 | + |
| 12 | +| 排序算法 | 最好(时间复杂度) | 平均(时间复杂度) | 最坏(时间复杂度) | 稳定性 | 空间复杂度 | |
| 13 | +| ------------ | ------------------------- | ------------------------- | ------------------------- | ------ | -------------------------------- | |
| 14 | +| 冒泡排序 | **O**(n) | **O**(n<sup>2</sup>) | **O**(n<sup>2</sup>) | 稳定 | **O**(1) | |
| 15 | +| **快速排序** | **O**(n*log<sub>2</sub>n) | **O**(n*log<sub>2</sub>n) | **O**(n<sup>2</sup>) | 不稳定 | **O**(log<sub>2</sub>n)~**O**(n) | |
| 16 | +| 直接插入排序 | **O**(n) | **O**(n<sup>2</sup>) | **O**(n<sup>2</sup>) | 稳定 | **O**(1) | |
| 17 | +| **希尔排序** | **O**(n) | **O**(n<sup>1.3</sup>) | **O**(n<sup>2</sup>) | 不稳定 | **O**(1) | |
| 18 | +| 简单选择排序 | **O**(n) | **O**(n<sup>2</sup>) | **O**(n<sup>2</sup>) | 不稳定 | **O**(1) | |
| 19 | +| **堆排序** | **O**(n*log<sub>2</sub>n) | **O**(n*log<sub>2</sub>n) | **O**(n*log<sub>2</sub>n) | 不稳定 | **O**(1) | |
| 20 | +| **归并排序** | **O**(n*log<sub>2</sub>n) | **O**(n*log<sub>2</sub>n) | **O**(n*log<sub>2</sub>n) | 稳定 | **O**(n) | |
| 21 | +| 基数排序 | **O**(d*(r+n)) | **O**(d*(r+n)) | **O**(d*(r+n)) | 稳定 | **O**(r*d+n) | |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | +#### 各种复杂度效率比较图 |
| 26 | + |
| 27 | +```java |
| 28 | +O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(2^n) < O(n^3) < O(n^n) |
| 29 | +``` |
| 30 | + |
| 31 | + |
| 32 | + |
| 33 | +**说明:** n 越大,越能体现算法效率。当 n 比较小时,复杂度会有一波小交叉,上图不考虑 n 比较小的情况。 |
| 34 | + |
| 35 | + |
| 36 | + |
| 37 | +##### 1. 冒泡排序 ★☆☆☆☆ |
| 38 | + |
| 39 | +```java |
| 40 | +public void bubbleSort(int[] array) { |
| 41 | + int temp; |
| 42 | + // 外层移动基准元素索引 |
| 43 | + for (int i = 0; i < array.length - 1; i++) { |
| 44 | + // 内层对基准元素与之后的每个做比较,冒泡排序 |
| 45 | + for (int j = i + 1; j < array.length; j++) { |
| 46 | + // 大的值,向上冒泡 |
| 47 | + if ((temp = array[i]) > array[j]) { |
| 48 | + array[i] = array[j]; |
| 49 | + array[j] = temp; |
| 50 | + } |
| 51 | + } |
| 52 | + } |
| 53 | +} |
| 54 | +``` |
| 55 | + |
| 56 | + |
| 57 | + |
| 58 | +##### 2. 快速排序 ★★★★★ |
| 59 | + |
| 60 | +```java |
| 61 | +public void quickSort(int[] array, int left, int right) { |
| 62 | + if (left < right) { |
| 63 | + int i = left; |
| 64 | + int j = right; |
| 65 | + int temp = array[i]; |
| 66 | + |
| 67 | + while (i < j) { |
| 68 | + while (i < j && array[j] >= temp) { |
| 69 | + j--; |
| 70 | + } |
| 71 | + if (i < j) { |
| 72 | + array[i++] = array[j]; |
| 73 | + } |
| 74 | + |
| 75 | + while (i < j && array[i] <= temp) { |
| 76 | + i++; |
| 77 | + } |
| 78 | + if (i < j) { |
| 79 | + array[j--] = array[i]; |
| 80 | + } |
| 81 | + |
| 82 | + array[i] = temp; |
| 83 | + quickSort(array, left, i - 1); |
| 84 | + quickSort(array, i + 1, right); |
| 85 | + } |
| 86 | + } |
| 87 | +} |
| 88 | +``` |
| 89 | + |
| 90 | + |
| 91 | + |
| 92 | +##### 3. 直接插入排序 ★★★☆☆ |
| 93 | + |
| 94 | +```java |
| 95 | +public void insertionSort(int[] array) { |
| 96 | + for (int i = 0; i < array.length; i++) { |
| 97 | + int temp = array[i]; |
| 98 | + int j; |
| 99 | + for (j = i; j > 0 && array[j - 1] > temp; j--) { |
| 100 | + array[j] = array[j - 1]; |
| 101 | + } |
| 102 | + if (array[j] > temp) { |
| 103 | + array[j] = temp; |
| 104 | + } |
| 105 | + } |
| 106 | +} |
| 107 | +``` |
| 108 | + |
| 109 | + |
| 110 | + |
| 111 | +##### 4. 希尔排序 ★★★☆☆ |
| 112 | + |
| 113 | +```java |
| 114 | +public void shellSort(int[] array) { |
| 115 | + // 增量 |
| 116 | + for (int d = array.length / 2; d > 0; d /= 2) { |
| 117 | + // 分组 |
| 118 | + for (int x = 0; x < d; x++) { |
| 119 | + // 直接插入排序(第 x 组的第2个元素起步) |
| 120 | + for (int i = x + d; i < array.length; i += d) { |
| 121 | + int temp = array[i]; |
| 122 | + int j = i; |
| 123 | + for (; j > d && array[j - d] > temp; j -= d) { |
| 124 | + array[j] = array[j - d]; |
| 125 | + } |
| 126 | + if (array[j] > temp) { |
| 127 | + array[j] = temp; |
| 128 | + } |
| 129 | + } |
| 130 | + } |
| 131 | + } |
| 132 | +} |
| 133 | +``` |
| 134 | + |
| 135 | + |
| 136 | + |
| 137 | +##### 5. 简单选择排序 ★★☆☆☆ |
| 138 | + |
| 139 | +```java |
| 140 | +public void selectionSort(int[] array) { |
| 141 | + int minIndex; |
| 142 | + int temp; |
| 143 | + for (int i = 0; i < array.length - 1; i++) { |
| 144 | + minIndex = i; |
| 145 | + for (int j = i + 1; j < array.length; j ++) { |
| 146 | + if (array[minIndex] > array[j]) { |
| 147 | + minIndex = j; |
| 148 | + } |
| 149 | + } |
| 150 | + if (minIndex > i) { |
| 151 | + temp = array[i]; |
| 152 | + array[i] = array[minIndex]; |
| 153 | + array[minIndex] = temp; |
| 154 | + } |
| 155 | + } |
| 156 | +} |
| 157 | +``` |
| 158 | + |
| 159 | + |
| 160 | + |
| 161 | +##### 6. 堆排序 ★★★★☆ |
| 162 | + |
| 163 | +```java |
| 164 | +public void heapSort(int[] array) { |
| 165 | + for (int i = array.length / 2 - 1; i >= 0; i--) { |
| 166 | + adjustHeap(array, i, array.length); |
| 167 | + } |
| 168 | + |
| 169 | + for (int i = array.length - 1; i > 0; i--) { |
| 170 | + swap(array, 0, i); |
| 171 | + adjustHeap(array, 0, i); |
| 172 | + } |
| 173 | +} |
| 174 | + |
| 175 | +private void adjustHeap(int[] array, int i, int length) { |
| 176 | + int temp = array[i]; |
| 177 | + |
| 178 | + for (int j = i * 2 + 1; j < length; j = j * 2 + 1) { |
| 179 | + if (j + 1 < length && array[j + 1] > array[j]) { |
| 180 | + j++; |
| 181 | + } |
| 182 | + if (array[j] > temp) { |
| 183 | + array[i] = array[j]; |
| 184 | + i = j; |
| 185 | + } else { |
| 186 | + break; |
| 187 | + } |
| 188 | + } |
| 189 | + array[i] = temp; |
| 190 | +} |
| 191 | + |
| 192 | +private void swap(int[] array, int a, int b) { |
| 193 | + int temp = array[a]; |
| 194 | + array[a] = array[b]; |
| 195 | + array[b] = temp; |
| 196 | +} |
| 197 | +``` |
| 198 | + |
| 199 | + |
| 200 | + |
| 201 | +##### 7. 归并排序 ★★★★☆ |
| 202 | + |
| 203 | +```java |
| 204 | +public void mergeSort(int[] array) { |
| 205 | + int[] aux = new int[array.length]; |
| 206 | + sort(array, 0, array.length - 1, aux); |
| 207 | +} |
| 208 | + |
| 209 | +private void sort(int[] array, int left, int right,int[] aux) { |
| 210 | + if (left < right) { |
| 211 | + int mid = (left + right) / 2; |
| 212 | + sort(array, left , mid, aux); |
| 213 | + sort(array, mid + 1, right, aux); |
| 214 | + merge(array, left, mid, right, aux); |
| 215 | + } |
| 216 | +} |
| 217 | + |
| 218 | +private void merge(int[] array, int left, int mid, int right, int[] aux){ |
| 219 | + int l = left; |
| 220 | + int m = mid + 1; |
| 221 | + int t = 0; |
| 222 | + |
| 223 | + while (l <= mid && m <= right) { |
| 224 | + if (array[l] <= array[m]) { |
| 225 | + aux[t++] = array[l++]; |
| 226 | + } else { |
| 227 | + aux[t++] = array[m++]; |
| 228 | + } |
| 229 | + } |
| 230 | + |
| 231 | + // 填充剩余元素 |
| 232 | + while (l <= mid) { |
| 233 | + aux[t++] = array[l++]; |
| 234 | + } |
| 235 | + while (m <= right) { |
| 236 | + aux[t++] = array[m++]; |
| 237 | + } |
| 238 | + |
| 239 | + t = 0; |
| 240 | + while (left <= right) { |
| 241 | + array[left++] = aux[t++]; |
| 242 | + } |
| 243 | +} |
| 244 | +``` |
| 245 | + |
0 commit comments