@@ -501,7 +501,7 @@ <h1>Source code for torch.jit</h1><div class="highlight"><pre>
501
501
< span class ="n "> Error</ span > < span class ="o "> .</ span > < span class ="vm "> __qualname__</ span > < span class ="o "> =</ span > < span class ="s2 "> "Error"</ span >
502
502
503
503
< span class ="c1 "> # for use in python if using annotate</ span >
504
- < div class ="viewcode-block " id ="annotate "> < a class ="viewcode-back " href ="../../generated/torch.jit.annotate.html#torch.futures .annotate "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> annotate</ span > < span class ="p "> (</ span > < span class ="n "> the_type</ span > < span class ="p "> ,</ span > < span class ="n "> the_value</ span > < span class ="p "> ):</ span >
504
+ < div class ="viewcode-block " id ="annotate "> < a class ="viewcode-back " href ="../../generated/torch.jit.annotate.html#torch.jit .annotate "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> annotate</ span > < span class ="p "> (</ span > < span class ="n "> the_type</ span > < span class ="p "> ,</ span > < span class ="n "> the_value</ span > < span class ="p "> ):</ span >
505
505
< span class ="sd "> """</ span >
506
506
< span class ="sd "> This method is a pass-through function that returns `the_value`, used to hint TorchScript</ span >
507
507
< span class ="sd "> compiler the type of `the_value`. It is a no-op when running outside of TorchScript.</ span >
@@ -548,7 +548,7 @@ <h1>Source code for torch.jit</h1><div class="highlight"><pre>
548
548
< span class ="k "> return</ span > < span class ="n "> the_value</ span > </ div >
549
549
550
550
551
- < div class ="viewcode-block " id ="script_if_tracing "> < a class ="viewcode-back " href ="../../generated/torch.jit.script_if_tracing.html#torch.futures .script_if_tracing "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> script_if_tracing</ span > < span class ="p "> (</ span > < span class ="n "> fn</ span > < span class ="p "> ):</ span >
551
+ < div class ="viewcode-block " id ="script_if_tracing "> < a class ="viewcode-back " href ="../../generated/torch.jit.script_if_tracing.html#torch.jit .script_if_tracing "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> script_if_tracing</ span > < span class ="p "> (</ span > < span class ="n "> fn</ span > < span class ="p "> ):</ span >
552
552
< span class ="sd "> """</ span >
553
553
< span class ="sd "> Compiles ``fn`` when it is first called during tracing. ``torch.jit.script``</ span >
554
554
< span class ="sd "> has a non-negligible start up time when it is first called due to</ span >
@@ -570,7 +570,7 @@ <h1>Source code for torch.jit</h1><div class="highlight"><pre>
570
570
571
571
572
572
< span class ="c1 "> # for torch.jit.isinstance</ span >
573
- < div class ="viewcode-block " id ="isinstance "> < a class ="viewcode-back " href ="../../generated/torch.jit.isinstance.html#torch.futures .isinstance "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> target_type</ span > < span class ="p "> ):</ span >
573
+ < div class ="viewcode-block " id ="isinstance "> < a class ="viewcode-back " href ="../../generated/torch.jit.isinstance.html#torch.jit .isinstance "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> target_type</ span > < span class ="p "> ):</ span >
574
574
< span class ="sd "> """</ span >
575
575
< span class ="sd "> This function provides for container type refinement in TorchScript. It can refine</ span >
576
576
< span class ="sd "> parameterized containers of the List, Dict, Tuple, and Optional types. E.g. ``List[str]``,</ span >
@@ -611,7 +611,7 @@ <h1>Source code for torch.jit</h1><div class="highlight"><pre>
611
611
< span class ="sd "> """</ span >
612
612
< span class ="k "> return</ span > < span class ="n "> _isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> target_type</ span > < span class ="p "> )</ span > </ div >
613
613
614
- < div class ="viewcode-block " id ="strict_fusion "> < a class ="viewcode-back " href ="../../generated/torch.jit.strict_fusion.html#torch.futures .strict_fusion "> [docs]</ a > < span class ="k "> class</ span > < span class ="nc "> strict_fusion</ span > < span class ="p "> (</ span > < span class ="nb "> object</ span > < span class ="p "> ):</ span >
614
+ < div class ="viewcode-block " id ="strict_fusion "> < a class ="viewcode-back " href ="../../generated/torch.jit.strict_fusion.html#torch.jit .strict_fusion "> [docs]</ a > < span class ="k "> class</ span > < span class ="nc "> strict_fusion</ span > < span class ="p "> (</ span > < span class ="nb "> object</ span > < span class ="p "> ):</ span >
615
615
< span class ="sd "> """</ span >
616
616
< span class ="sd "> This class errors if not all nodes have been fused in</ span >
617
617
< span class ="sd "> inference, or symbolically differentiated in training.</ span >
@@ -652,14 +652,14 @@ <h1>Source code for torch.jit</h1><div class="highlight"><pre>
652
652
< span class ="k "> finally</ span > < span class ="p "> :</ span >
653
653
< span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> Graph</ span > < span class ="o "> .</ span > < span class ="n "> set_global_print_source_ranges</ span > < span class ="p "> (</ span > < span class ="n "> old_enable_source_ranges</ span > < span class ="p "> )</ span > < span class ="c1 "> # type: ignore[attr-defined]</ span >
654
654
655
- < div class ="viewcode-block " id ="enable_onednn_fusion "> < a class ="viewcode-back " href ="../../generated/torch.jit.enable_onednn_fusion.html#torch.futures .enable_onednn_fusion "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> enable_onednn_fusion</ span > < span class ="p "> (</ span > < span class ="n "> enabled</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="p "> ):</ span >
655
+ < div class ="viewcode-block " id ="enable_onednn_fusion "> < a class ="viewcode-back " href ="../../generated/torch.jit.enable_onednn_fusion.html#torch.jit .enable_onednn_fusion "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> enable_onednn_fusion</ span > < span class ="p "> (</ span > < span class ="n "> enabled</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="p "> ):</ span >
656
656
< span class ="sd "> """</ span >
657
657
< span class ="sd "> Enables or disables onednn JIT fusion based on the parameter `enabled`.</ span >
658
658
< span class ="sd "> """</ span >
659
659
660
660
< span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _jit_set_llga_enabled</ span > < span class ="p "> (</ span > < span class ="n "> enabled</ span > < span class ="p "> )</ span > </ div >
661
661
662
- < div class ="viewcode-block " id ="onednn_fusion_enabled "> < a class ="viewcode-back " href ="../../generated/torch.jit.onednn_fusion_enabled.html#torch.futures .onednn_fusion_enabled "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> onednn_fusion_enabled</ span > < span class ="p "> ():</ span >
662
+ < div class ="viewcode-block " id ="onednn_fusion_enabled "> < a class ="viewcode-back " href ="../../generated/torch.jit.onednn_fusion_enabled.html#torch.jit .onednn_fusion_enabled "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> onednn_fusion_enabled</ span > < span class ="p "> ():</ span >
663
663
< span class ="sd "> """</ span >
664
664
< span class ="sd "> Returns whether onednn JIT fusion is enabled</ span >
665
665
< span class ="sd "> """</ span >
0 commit comments