-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_strange.py
78 lines (58 loc) · 3.45 KB
/
train_strange.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import argparse
import numpy as np
import pickle as pkl
from model_strange import ODENetwork
from data_strange import get_dataset
from utils import runge_kutta_solver, reshape_data
this_dir = os.path.abspath(os.getcwd())
def get_args():
parser = argparse.ArgumentParser(description=None)
parser.add_argument('--save_folder', default='experiment-strange-test', type=str)
# Data variables
parser.add_argument('--train_nb_sample', default=1000, type=int)
parser.add_argument('--train_nb_timestep', default=400, type=int)
parser.add_argument('--train_t_span', default=(0, 20), type=tuple)
parser.add_argument('--train_seed', default=0, type=int)
parser.add_argument('--train_noise_level', default=0.05, type=float)
parser.add_argument('--test_nb_sample', default=50, type=int)
parser.add_argument('--test_nb_timestep', default=400, type=int)
parser.add_argument('--test_t_span', default=(0, 20), type=tuple)
parser.add_argument('--test_seed', default=2000, type=int)
parser.add_argument('--test_noise_level', default=0.0, type=float)
# Model variables
parser.add_argument('--time_horizon', default=10, type=int)
parser.add_argument('--nb_units', default=200, type=int)
parser.add_argument('--nb_layers', default=2, type=int)
parser.add_argument('--activation', default='tanh', type=str)
parser.add_argument('--lambda_trs', default=10.0, type=float)
parser.add_argument('--learning_rate', default=2e-4, type=float)
parser.add_argument('--epochs', default=1000, type=int)
parser.add_argument('--batch_size', default=1024, type=int)
parser.add_argument('--verbose', default=2, type=int)
return parser.parse_args()
def train(args):
save_dir = os.path.join(this_dir, args.save_folder)
os.makedirs(save_dir, exist_ok=True)
print('save directory:', save_dir)
split_name = 'ode_' + str(args.lambda_trs)
print('experimental condition:', split_name)
ts, xs = get_dataset(nb_samples=args.train_nb_sample, nb_timestep=args.train_nb_timestep,
t_span=args.train_t_span, seed=args.train_seed, noise_level=args.train_noise_level)
t_train, x_train, y_train = reshape_data(ts=ts, xs=xs, substep=args.time_horizon)
oden = ODENetwork(time_horizon=args.time_horizon, nb_units=args.nb_units, nb_layers=args.nb_layers,
activation=args.activation, lambda_trs=args.lambda_trs, learning_rate=args.learning_rate)
oden.solver().fit(x=[t_train, x_train], y=y_train, epochs=args.epochs, batch_size=args.batch_size, verbose=args.verbose)
oden.func.save_weights(os.path.join(save_dir, split_name + '_' + 'weight.h5'))
ts, xs = get_dataset(nb_samples=args.test_nb_sample, nb_timestep=args.test_nb_timestep,
t_span=args.test_t_span, seed=args.test_seed, noise_level=args.test_noise_level)
t_test, x_test, y_test = ts, xs[:, 0, :], xs[:, 1:, :]
y_pred = runge_kutta_solver(ts=t_test, x0=x_test, func=oden.func, time_augment=False)
mse_t_per_sample = np.mean(np.mean(np.square(y_test - y_pred), axis=-1), axis=-1)
mse_t, std_t = 1e2 * np.mean(mse_t_per_sample), 1e2 * np.std(mse_t_per_sample)
print('trajectory MSE: {:.2f} pm {:.2f}'.format(mse_t, std_t))
result = {'ground_truth': y_test, 'predicted': y_pred, 'mse_t': mse_t, 'std_t': std_t}
with open(os.path.join(save_dir, split_name + '_' + 'result.pkl'), 'wb') as f:
pkl.dump(result, f)
if __name__ == '__main__':
train(get_args())