
Tom Herbert <therbert@fb.com>
Alexei Starovoitov<ast@fb.com>

eXpress Data Path (XDP)
Programmable and high performance networking data path

mailto:therbert@fb.com
mailto:ast@fb.com


What is XDP? 
● A programmable, high performance, specialized application, 

packet processor in the Linux networking data path
● Bare metal packet processing at lowest point in the SW stack
● Use cases include

○ Pre-stack processing like filtering to do DOS mitigation
○ Forwarding and load balancing
○ Batching techniques such as in Generic Receive Offload
○ Flow sampling, monitoring
○ ULP processing (e.g. message delineation)



Properties
● XDP is designed for high performance. It uses known 

techniques and applies selective constraints to achieve 
performance goals

● XDP is also designed for programmability. New functionality can 
be implemented on the fly without needing kernel modification

● XDP is not kernel bypass. It is an integrated fast path in the 
kernel stack

● XDP does not replace the TCP/IP stack. It augments the stack 
and works in concert (Don’t throw the baby out with the bathwater!)

● XDP does not require any specialized hardware. It espouses the 
less is more principle for networking hardware



Relationship to kernel bypass
Think of it this way:

If the traditional kernel network stack is a freeway, kernel bypass is 
a proposal to build an infrastructure of high speed trains and XDP 
is a proposal for adding carpool lanes to the freeway.



Performance techniques
● Lockless
● Batched I/O operations
● Busy polling
● Direct queue access
● Page recycling to avoid page allocation/free where possible
● Packet processing without meta data (skbuff) allocation
● Efficient table (flow state) lookup
● Packet steering
● Siloed processing, minimize cross CPU/NUMA node ops
● RX flow hash
● Common NIC offloads
● Judicious cache prefetch, DDIO



A few hardware requirements
● Multi-queue NICs
● Common protocol-generic offloads

○ TX/RX checksum offload
○ Receive Side Scaling (RSS)
○ Transport Segmentation Offload (TSO)

● LRO, aRFS, flow hash from device are “nice to have”s



XDP packet processor
● In kernel component that processes RX packets
● Process RX “packet-pages” directly out of driver

○ Functional interface
○ No early allocation of skbuff’s, no SW queues

● Nominally assign one CPU to each RX queue
○ No locking RX queue
○ CPU can be dedicated to busy poll or use interrupt model

● BPF programs performs processing
○ Parses packets
○ Performs table lookups, creates/manages stateful filters
○ Manipulates packet (e.g. for encap/decap)
○ Returns action



XDP packet processor



Basic XDP packet processor actions
● Forward

○ Possibly after packet modification (e.g. NAT, ILA router)
○ TX queue is exclusive to same CPU so no lock needed

● Drop
○ Just return error from the function
○ Driver recycles pages

● Normal receive
○ Allocate skbuff and receive into stack
○ Steer packet to another CPU for processing
○ Allows “raw” interfaces to userspace like AF_PACKET, netmap

● Generic Receive Offload
○ Coalesce packets of same connection
○ Perform receive of large packets



System configuration example



Programmability
● Packet inspection, action found by BPF programs

○ Flexible (loop free) protocol header parsing
○ Maybe stateful as a result of flow lookup
○ Simple packet field rewriting (encap/decap)

● Optimized lookup
○ Flow lookups (e.g. using flow hash provided by device)
○ Fixed length lookups (e.g. 64-bit identifier lookup for ILA)
○ Statefulness, make transient states (e.g. needed for GRO)

● Extensible model
○ Application processing (e.g. app. layer protocol GRO)
○ Leverage ongoing work offload BPF to HW
○ BPF programs can be portable to userspace or other OSes



BPF Architecture



Advantages of XDP over DPDK
● Allows option of busy polling or interrupt driven networking
● No need to allocate huge pages
● Dedicated CPUs are not required, user has many options on 

how to structure the work between CPUs
● No need to inject packets into the kernel from a third party 

userspace application
● No special hardware requirements
● No need to define a new security model for accessing 

networking HW
● No third party code/licensing required



Performance goals
● Packet drop (e.g. DOS mitigation)

○ 20M pps per CPU
● Forwarding (e.g ILA router)

○ 14M pps per CPU
● Generic Receive Offload

○ 100Gbps rate served by single CPU


