eXpress Data Path (XDP)

Programmable and high performance networking data path

Tom Herbert <therbert@fb.com>
Alexei Starovoitov<ast@fb.com>

HOV
LANE

AHEAD



mailto:therbert@fb.com
mailto:ast@fb.com

What is XDP?

e A programmable, high performance, specialized application,
packet processor in the Linux networking data path

e Bare metal packet processing at lowest point in the SW stack

e Use cases include

O

O O O O

Pre-stack processing like filtering to do DOS mitigation
Forwarding and load balancing

Batching techniques such as in Generic Receive Offload
Flow sampling, monitoring

ULP processing (e.g. message delineation)



Properties

XDP is designed for high performance. It uses known
techniques and applies selective constraints to achieve
performance goals

XDP is also designed for programmability. New functionality can
be implemented on the fly without needing kernel modification
XDP is not kernel bypass. It is an integrated fast path in the
kernel stack

XDP does not replace the TCP/IP stack. It augments the stack
and works in concert (Don’t throw the baby out with the bathwater!)
XDP does not require any specialized hardware. |t espouses the
less is more principle for networking hardware



Relationship to kernel bypass

Think of it this way:

If the traditional kernel network stack is a freeway, kernel bypass is
a proposal to build an infrastructure of high speed trains and XDP
IS a proposal for adding carpool lanes to the freeway.



Performance techniques

Lockless

Batched I/O operations

Busy polling

Direct queue access

Page recycling to avoid page allocation/free where possible
Packet processing without meta data (skbuff) allocation
Efficient table (flow state) lookup

Packet steering

Siloed processing, minimize cross CPU/NUMA node ops
RX flow hash

Common NIC offloads

Judicious cache prefetch, DDIO



A few hardware requirements

e Multi-queue NICs
e Common protocol-generic offloads
o TX/RX checksum offload
o Receive Side Scaling (RSS)
o Transport Segmentation Offload (TSO)
e LRO, aRFS, flow hash from device are “nice to have’s



XDP packet processor

e |n kernel component that processes RX packets

e Process RX “packet-pages” directly out of driver
o Functional interface
o No early allocation of skbuff's, no SW queues
e Nominally assign one CPU to each RX queue
o No locking RX queue
o CPU can be dedicated to busy poll or use interrupt model
e BPF programs performs processing
o Parses packets
o Performs table lookups, creates/manages stateful filters
o Manipulates packet (e.g. for encap/decap)
o Returns action



XDP packet processor

XDP Packet

Processor

e
Parsing/processing

BPF Program

Load/configure BPF
Application T Application
‘ -
L — — - S . S S S S S - - — — — L] — — '— —_— _— _— —‘ — — — — — —-—
T : .
Sockets Packet steering : Sockets
TCP/IP stack Receive local " TCP/IP stack
f I
Drop /' : Forward

Driver/device

= =




Basic XDP packet processor actions

e Forward
o Possibly after packet modification (e.g. NAT, ILA router)
o TX queue is exclusive to same CPU so no lock needed

e Drop
o Just return error from the function
o Driver recycles pages
e Normal receive
o Allocate skbuff and receive into stack

o Steer packet to another CPU for processing
o Allows “raw” interfaces to userspace like AF_PACKET, netmap

e Generic Receive Offload
o Coalesce packets of same connection
o Perform receive of large packets



System configuration example

Application CPU Application CPU ’; Application CPU Application CPU
XDP receiver CPU | XDP receiver CPU
(busy polling) (busy polling)

Numa Node #0 Numa Node #1

Device packet steering
(RPS, aRFS, nTuple filtering, Flow Director)




Programmability

e Packet inspection, action found by BPF programs
o Flexible (loop free) protocol header parsing
o Maybe stateful as a result of flow lookup
o Simple packet field rewriting (encap/decap)
e Optimized lookup
o Flow lookups (e.g. using flow hash provided by device)
o Fixed length lookups (e.g. 64-bit identifier lookup for ILA)
o Statefulness, make transient states (e.g. needed for GRO)
e Extensible model
o Application processing (e.g. app. layer protocol GRO)
o Leverage ongoing work offload BPF to HW
o BPF programs can be portable to userspace or other OSes



BPF Architecture

Applications Network Security /0 policy Load balancing
R R (protocols) analytics sandboxing (GBP) (so_reuseport)
(web1k, sflow) (chrome, Ixd)
race/stap ther languages
Languages C dt /sta P4 Other |
c i LLVM GCC Other compilers or
ompilers assemblers
BPF program
K | Tracing ([ku]probes, Networking (sockets, Security (seccomp,
erne tracepoints) TC, protocols, syscalls)
subsystems switchdev)
Core kernel BFP engine BFP helpers
BPF (csum, encryption, redirect, ...)
Hatrdr;vare JITs Back-end compilers
interrace

Hardware x86 arm NPUs Switches NICs



Advantages of XDP over DPDK

e Allows option of busy polling or interrupt driven networking

e No need to allocate huge pages

e Dedicated CPUs are not required, user has many options on
how to structure the work between CPUs

e No need to inject packets into the kernel from a third party
userspace application

e No special hardware requirements

e No need to define a new security model for accessing
networking HW

e No third party code/licensing required



Performance goals

e Packet drop (e.g. DOS mitigation)
o 20M pps per CPU
e Forwarding (e.g ILA router)
o 14M pps per CPU
e Generic Receive Offload
o 100Gbps rate served by single CPU



