diff --git a/.gitignore b/.gitignore index 048886c..39a3ac9 100644 --- a/.gitignore +++ b/.gitignore @@ -1,8 +1,5 @@ -.DS_Store -*.pyc -.ipynb_checkpoints -*.c -*.so -*.o -examples/IPython Kernel/test.txt -examples/IPython Kernel/mod.py +node_modules/ +lib/ +.ipynb_checkpoints/ +__pycache__/ +my_certificate_viewer/ diff --git a/1 - Beyond Plain Python.ipynb b/1 - Beyond Plain Python.ipynb new file mode 100644 index 0000000..c2dbd5e --- /dev/null +++ b/1 - Beyond Plain Python.ipynb @@ -0,0 +1,839 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# IPython: beyond plain Python" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more fluid and efficient." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## First things first: running code, getting help" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the notebook, to run a cell of code, hit `Shift-Enter`. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end. Alternately, you can use:\n", + " \n", + "- `Alt-Enter` to force the creation of a new cell unconditionally (useful when inserting new content in the middle of an existing notebook).\n", + "- `Control-Enter` executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep permanently." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Hi\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Getting help:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "Typing `object_name?` will print all sorts of details about any object, including docstrings, function definition lines (for call arguments) and constructor details for classes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import collections\n", + "collections.namedtuple?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "collections.Counter??" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "*int*?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "An IPython quick reference card:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%quickref" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Tab completion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Tab completion, especially for attributes, is a convenient way to explore the structure of any object you’re dealing with. Simply type `object_name.` to view the object’s attributes. Besides Python objects and keywords, tab completion also works on file and directory names." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "collections." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The interactive workflow: input, output, history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "2+10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_+10" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "You can suppress the storage and rendering of output if you append `;` to the last cell (this comes in handy when plotting with matplotlib, for example):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "10+20;" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "The output is stored in `_N` and `Out[N]` variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_10 == Out[10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Previous inputs are available, too:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "slideshow": { + "slide_type": "-" + } + }, + "outputs": [], + "source": [ + "In[11]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_i" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%history -n 1-5" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "**Exercise**\n", + "\n", + "Use `%history?` to have a look at `%history`'s magic documentation, and write the last 10 lines of history to a file named `log.py`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Accessing the underlying operating system" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pwd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "files = !ls notebooks\n", + "print(\"files in notebooks directory:\")\n", + "print(files)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!echo $files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!echo {files[0].upper()}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that all this is available even in multiline blocks:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "for i,f in enumerate(files):\n", + " if f.endswith('ipynb'):\n", + " !echo {\"%02d\" % i} - \"{os.path.splitext(f)[0]}\"\n", + " else:\n", + " print('--')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Beyond Python: magic functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The IPyhton 'magic' functions are a set of commands, invoked by prepending one or two `%` signs to their name, that live in a namespace separate from your normal Python variables and provide a more command-like interface. They take flags with `--` and arguments without quotes, parentheses or commas. The motivation behind this system is two-fold:\n", + " \n", + "- To provide an orthogonal namespace for controlling IPython itself and exposing other system-oriented functionality.\n", + "\n", + "- To expose a calling mode that requires minimal verbosity and typing while working interactively. Thus the inspiration taken from the classic Unix shell style for commands." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%magic" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Line vs cell magics:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%timeit list(range(1000))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%timeit\n", + "list(range(10))\n", + "list(range(100))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Line magics can be used even inside code blocks:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(1, 5):\n", + " size = i*100\n", + " print('size:', size, end=' ')\n", + " %timeit list(range(size))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Magics can do anything they want with their input, so it doesn't have to be valid Python:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "echo \"My shell is:\" $SHELL\n", + "echo \"My disk usage is:\"\n", + "df -h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another interesting cell magic: create any file you want locally from the notebook:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%writefile test.txt\n", + "This is a test file!\n", + "It can contain anything I want...\n", + "\n", + "And more..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!cat test.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see what other magics are currently defined in the system:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%lsmagic" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def to_optimize(N):\n", + " total = [0,0]\n", + " ta = 0\n", + " tb = 0\n", + " for i in range(N):\n", + " for j in range(N):\n", + " a = i**2\n", + " b = j*2\n", + " total[0] += a\n", + " total[1] += b\n", + " return total" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%timeit to_optimize(1_000)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%prun to_optimize(1_000)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext line_profiler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%lprun -f to_optimize to_optimize(1_000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running normal Python code: execution and errors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Not only can you input normal Python code, you can even paste straight from a Python or IPython shell session:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + ">>> # Fibonacci series:\n", + "... # the sum of two elements defines the next\n", + "... a, b = 0, 1\n", + ">>> while b < 10:\n", + "... print(b)\n", + "... a, b = b, a+b" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "In [1]: for i in range(10):\n", + " ...: print(i, end=' ')\n", + " ...: " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And when your code produces errors, you can control how they are displayed with the `%xmode` magic:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%writefile mod.py\n", + "\n", + "def f(x):\n", + " return 1.0/(x-1)\n", + "\n", + "def g(y):\n", + " return f(y+1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's call the function `g` with an argument that would produce an error:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import mod\n", + "mod.g(0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%xmode plain\n", + "mod.g(0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%xmode verbose\n", + "mod.g(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The default `%xmode` is \"context\", which shows additional context but not all local variables. Let's restore that one for the rest of our session." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%xmode context" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running code in other languages with special `%%` magics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%perl\n", + "@months = (\"July\", \"August\", \"September\");\n", + "print $months[0];" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%ruby\n", + "name = \"world\"\n", + "puts \"Hello #{name.capitalize}!\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Raw Input in the notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since 1.0 the IPython notebook web application support `raw_input` which for example allow us to invoke the `%debug` magic in the notebook:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mod.g(0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%debug" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Don't foget to exit your debugging session. Raw input can of course be use to ask for user input:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "enjoy = input('Are you enjoying this tutorial? ')\n", + "print('enjoy is:', enjoy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting in the notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This magic configures matplotlib to render its figures inline:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.linspace(0, 2*np.pi, 300)\n", + "y = np.sin(x**2)\n", + "plt.plot(x, y)\n", + "plt.title(\"A little chirp\")\n", + "fig = plt.gcf() # let's keep the figure object around for later..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ventures into widgets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from ipywidgets import interact, interact_manual\n", + "\n", + "@interact(color=['C0','C1', 'C2'], f={'sine': np.sin, 'cos': np.cos})\n", + "def myplot(f, λ=2.0, color='C0'):\n", + " x = np.linspace(0, 2*np.pi, 300)\n", + " y = f(λ*x**2)\n", + " plt.plot(x, y, c=color)\n", + " plt.title(f\"A little chirp (λ={λ})\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/2 - Autoawait in IPython.ipynb b/2 - Autoawait in IPython.ipynb new file mode 100644 index 0000000..6a29c79 --- /dev/null +++ b/2 - Autoawait in IPython.ipynb @@ -0,0 +1,377 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Async and Await Primer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A quick primer on `async`/`await`. Async and await are relatively new features in Python which allow **concurent** programming. They won't make your code magically faster, but may make your code easier to read, maintain and reason about. \n", + "You will likely hear the terms event-loop, coroutines and many other ones, they will make sens in time. \n", + "\n", + "The key thing to remember is that \n", + " - async-functions can call both sync and async functions.\n", + " - sync functions can only call sync. \n", + " - You _must_ always `await `\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Event loop\n", + "\n", + "It's like the \"One ring\", there shoudl be only one. IPython (and Jupyter) usually already run one.\n", + "\n", + "### Bad news\n", + "If you need to run any code that need to create and manage an event-loop, consult the docs. \n", + "Typically you can't run a tornado app inside jupyter.\n", + "\n", + "### Good news\n", + "\n", + "If you don't know/don't care, all is already setup for you. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example\n", + "\n", + "Let's deactivate enventloop integration and try what is (usually invalid Python)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%autoawait False" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from asyncio import sleep" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# does not sleep, need to be awaited\n", + "print('before sleep')\n", + "sleep(5)\n", + "print('after sleep')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "await sleep(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def f():\n", + " await sleep(5)\n", + "f()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async def f():\n", + " print('before...')\n", + " await sleep(5)\n", + " print('after')\n", + "### does not call f\n", + "f()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "await f()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "... back to step beginning. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Autoawait" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Autoawait will _attempt_ to detect async code and run it for you. There are of course limitations (bug report welcome)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%autoawait True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will note that any line that start with `%` is invalid Python and are IPython specific syntax. Those are call magics (line-magics with a single `%` sign, cell magics with a double `%%` sign)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('before')\n", + "await sleep(5)\n", + "print('after')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Top level await is now valid syntax. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tpl = 'https://anapioficeandfire.com/api/characters/{}'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%time\n", + "\n", + "results = []\n", + "for i in range(1,50):\n", + " import requests\n", + " print('.', end='')\n", + " r = requests.get(tpl.format(i)).json()['aliases']\n", + " print('x', end='')\n", + " results.append(r)\n", + " \n", + "for r in results:\n", + " print(r)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Moving to asynchronous" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nothing is perfect; if you get RuntimeErrors with asyncio, you may need to restart your kernel. More during my colleagues aiohttp tutorial this Afternoon" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import aiohttp" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async with aiohttp.ClientSession() as session:\n", + " response = await session.get(tpl.format(583))\n", + " json = await response.json()\n", + " print(json['aliases'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async def get_char(i, session):\n", + " print('.', end='')\n", + " response = await session.get(tpl.format(i))\n", + " json = await response.json()\n", + " print('x', end='')\n", + " return json['aliases']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async with aiohttp.ClientSession() as s:\n", + " print(await get_char(1303, s))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tasks = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import asyncio\n", + "async with aiohttp.ClientSession() as session:\n", + " # start \n", + " for i in range(1,50):\n", + " task = asyncio.ensure_future(get_char(i, session))\n", + " tasks.append(task)\n", + " results = await asyncio.gather(*tasks)\n", + " for r in results:\n", + " print(r)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Advance Autoawait usage, Exercise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find the documentation for autoawait, and try to make it work with another asynchronous library. For exampe try to ply with [`trio`](https://trio.readthedocs.io/en/latest/), using `trio.sleep` and `trio.open_nursery` to get several concurent task running, pritning different message regularly and at random intervals. What happen if you use `time.sleep()` instead of `trio.sleep()` ? What hapen if you use `asyncio.sleep()` ?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import trio" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async def every(n, message):\n", + " for i in range(30):\n", + " await trio.sleep(n)\n", + " print(message)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%autoawait trio" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async with trio.open_nursery() as nursery:\n", + " nursery.start_soon(every, 1, 'Plic')\n", + " nursery.start_soon(every, 2, 'Ploc')\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/3-back-to-terminal.md b/3-back-to-terminal.md new file mode 100644 index 0000000..a05a994 --- /dev/null +++ b/3-back-to-terminal.md @@ -0,0 +1,13 @@ +# Back to terminal + +You can run the following either in Jupyter/JupyterLab web-based terminal or +using your preferred terminal emulator. The syntax and capabilities will +slightly depends on your platform. + +## Prompt toolkit. + +IPython interface is base on `prompt_toolkit` since version 5.0. + - Multiline editting + - Inference of when to execute vs a new line. + - Tab completion + - edit and subprocesses diff --git a/4-JupyterLab-UI/Exercise-1-solutions.ipynb b/4-JupyterLab-UI/Exercise-1-solutions.ipynb new file mode 100644 index 0000000..3a8d312 --- /dev/null +++ b/4-JupyterLab-UI/Exercise-1-solutions.ipynb @@ -0,0 +1,1000 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 1 notebook\n", + "\n", + "This notebook contains solutions to the homework in this same folder (\"Exercise1.md\").\n", + "\n", + "## Notebook operations and advanced operations\n", + "\n", + "This is a Markdown cell with **bold**, _italic_, in-line $math$, and formulas:\n", + "\n", + "$$f(x) = a.x^2+b.x+c$$\n", + "\n", + "$$x_\\pm = \\frac{-b \\pm \\sqrt(b^2-4ac)}{2a}$$\n", + "\n", + "Here is an example with triple backticks and language-specific syntax highlighting:\n", + "\n", + "```python\n", + "# I can write some code:\n", + "from IPython.display import Math\n", + "Math('\\Delta = b^2-4ac')\n", + "```\n", + "\n", + "And an example with indented 4 spaces:\n", + "\n", + " # I can write some code:\n", + " from IPython.display import Math\n", + " Math('\\Delta = b^2-4ac')\n", + "\n", + "Keep getting the feel of the editor (Select and press TAB ...)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\Delta = b^2-4ac$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Math\n", + "Math('\\Delta = b^2-4ac')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Continuing on with the exercise remembering to use the keyboard shortcuts to be efficient. Use `Shift-Enter` to execute the following command:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello PyCon\n" + ] + } + ], + "source": [ + "print(\"Hello PyCon\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are multiple options to run a cell. `Ctrl-Enter` execute a cell in place (and keeps it selected), while `Shift-Enter` execute and select next. Finally, `Alt-Enter` execute and insert below." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def fibgen():\n", + " a,b = 1,1\n", + " for i in range(100):\n", + " yield i, a\n", + " a,b = b, a+b\n", + "fib = fibgen()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0, 1)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Use Ctrl-Enter to iterate through values of fib\n", + "next(fib)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Practice tab completion using the following example:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mType:\u001b[0m module\n", + "\u001b[0;31mString form:\u001b[0m \n", + "\u001b[0;31mFile:\u001b[0m ~/anaconda3/envs/pycon2019/lib/python3.7/site-packages/pandas/__init__.py\n", + "\u001b[0;31mDocstring:\u001b[0m \n", + "pandas - a powerful data analysis and manipulation library for Python\n", + "=====================================================================\n", + "\n", + "**pandas** is a Python package providing fast, flexible, and expressive data\n", + "structures designed to make working with \"relational\" or \"labeled\" data both\n", + "easy and intuitive. It aims to be the fundamental high-level building block for\n", + "doing practical, **real world** data analysis in Python. Additionally, it has\n", + "the broader goal of becoming **the most powerful and flexible open source data\n", + "analysis / manipulation tool available in any language**. It is already well on\n", + "its way toward this goal.\n", + "\n", + "Main Features\n", + "-------------\n", + "Here are just a few of the things that pandas does well:\n", + "\n", + " - Easy handling of missing data in floating point as well as non-floating\n", + " point data.\n", + " - Size mutability: columns can be inserted and deleted from DataFrame and\n", + " higher dimensional objects\n", + " - Automatic and explicit data alignment: objects can be explicitly aligned\n", + " to a set of labels, or the user can simply ignore the labels and let\n", + " `Series`, `DataFrame`, etc. automatically align the data for you in\n", + " computations.\n", + " - Powerful, flexible group by functionality to perform split-apply-combine\n", + " operations on data sets, for both aggregating and transforming data.\n", + " - Make it easy to convert ragged, differently-indexed data in other Python\n", + " and NumPy data structures into DataFrame objects.\n", + " - Intelligent label-based slicing, fancy indexing, and subsetting of large\n", + " data sets.\n", + " - Intuitive merging and joining data sets.\n", + " - Flexible reshaping and pivoting of data sets.\n", + " - Hierarchical labeling of axes (possible to have multiple labels per tick).\n", + " - Robust IO tools for loading data from flat files (CSV and delimited),\n", + " Excel files, databases, and saving/loading data from the ultrafast HDF5\n", + " format.\n", + " - Time series-specific functionality: date range generation and frequency\n", + " conversion, moving window statistics, moving window linear regressions,\n", + " date shifting and lagging, etc.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pd?" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# tab to DataFrame\n", + "pd.D" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Shift-Tab to see DataFrame parameters\n", + "pd.DataFrame(" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1024px-Hubble_Interacting_Galaxy_AM_0500-620_(2008-04-24).jpg\n", + "Dockerfile\n", + "Museums_in_DC.geojson\n", + "README.md\n", + "bar.vl.json\n", + "iris.csv\n", + "japan_meterological_agency_201707211555.json\n", + "zika_assembled_genomes.fasta\n" + ] + } + ], + "source": [ + "!ls ../data/" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# open inspector\n", + "df = pd.read_csv('../data/iris.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "## Use multiple cursors to uncomment the following\n", + "#import IPython\n", + "#ip = get_ipython()\n", + "#ip.Completer.use_jedi = False" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can use some % `magic` to run Matplotlib in-line in this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAELCAYAAADdriHjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+0XXV55/H3h5ACkmA0yQpKEoOGMkWBgLcMEaGMOlYUYaY6U2eVZsDlYkBUKO1o7VpFS5faOtZStDXDsj+IP8cJFC0DFZfIENRgbyAECSq3DZIohCTlRyLIgHnmj7Mv3HM4955z7vnufb77nM9rrbtyz9777PPsb/a9z93nfJ/9KCIwMzObdMCgAzAzs7w4MZiZWRMnBjMza+LEYGZmTZwYzMysiRODmZk1cWIwM7MmTgxmZtakksQgaY6kOyVd32bd6ZIek7S5+LqsipjMzKy9Ayt6nYuBe4HDplm/ISLO7HZnixYtihUrVqSIy8xsZGzatGl3RCzutF3piUHSUuAtwEeAS1Psc8WKFYyPj6fYlZnZyJD04262q+KtpCuA9wP7Z9hmtaS7JN0o6ZUVxGRmZtMoNTFIOhN4OCI2zbDZHcDLIuJ44FPAddPs63xJ45LGd+3aVUK0ZmYG5V8xnAKcJel+4MvA6yR9fuoGEfF4ROwrvr8BmCtpUeuOIuKqiBiLiLHFizu+RWZmZrNUamKIiA9GxNKIWAG8A7g5Is6Zuo2kwyWp+P6kIqY9ZcZlZmbTq2pWUhNJFwBExFrg7cCFkp4BngTeEW4SYWY2MKrj7+CxsbHwrCQzs95I2hQRY522c+WzDYU9+57iru2PsmffU4MOxaz2BvJWkllKX938Ez5wzRbmHnAAT+/fz8ffdhxnrTpi0GGZ1ZavGKzW9ux7ig9cs4WfP72fvU89w8+f3s/7r9niKwezPjgxWK3teORJ5h7QfBrPPeAAdjzy5IAiMqs/JwartaUvOoSn9zcX1T+9fz9LX3TIgCIyqz8nBqu1hfMO4uNvO46D5x7A/IMO5OC5B/Dxtx3HwnkHDTo0s9ryh89We2etOoJTVi5ixyNPsvRFhzgpmPXJicGGwsJ5BzkhmCXit5LMzKyJE4OZmTVxYjAzsyZODGZm1sSJwczMmjgxmJlZEycGMzNr4sRgZmZNnBjMzKyJE4MNnJvsmOXFt8SwgXKTHbP8+IrBBsZNdszy5MRgA+MmO2Z5cmKwgXGTHbM8OTHYwLjJjlme/OGzDZSb7Jjlx4nBBs5Ndszy4reSbEauMTAbPb5isGm5xsBsNPmKwdpyjYHZ6HJisLZcY2A2upwYrC3XGJiNLicGa8s1Bmajyx8+27RcY2A2miq5YpA0R9Kdkq5vs06SrpQ0IWmLpBOriMm6s3DeQRy/bIGTgtkIqeqtpIuBe6dZdwZwVPF1PvCZimKyEeJ6DLPulf5WkqSlwFuAjwCXttnkbGBdRASwUdICSS+JiAfLjs1Gg+sxzHpTxRXDFcD7gf3TrD8C2D7l8Y5imVnfXI9h1rtSE4OkM4GHI2LTTJu1WRZt9nW+pHFJ47t27UoWow0312OY9a7sK4ZTgLMk3Q98GXidpM+3bLMDWDbl8VLgp607ioirImIsIsYWL15cVrw2ZFyPYda7UhNDRHwwIpZGxArgHcDNEXFOy2ZfA9YUs5NOBh7z5wuWiusxzHo3kDoGSRcARMRa4AbgzcAE8ARw3iBisuHlegyz3qgxGahexsbGYnx8fNBhmJnViqRNETHWaTvfEsNKN7FzL+vHtzOxc++gQzGzLviWGFaqy667m3UbH3j28ZrVy7n87GMHGJGZdeIrBivNxM69TUkBYN13H/CVg1nmnBisNJu3P9rTcjPLgxODlWbVsgU9LTezPDgxWGlWLpnPmtXLm5atWb2clUvmDygiM+uGP3y2Ul1+9rGsOXkFm7c/yqplC5wUzGrAicFKt3LJfCcEsxrxW0kjbHzbHj550w8Z37Zn0KH0zf0WLGcpzs8qz3FfMYyocz67kdsmGgnhypsnOHXlQj73rpMHHNXsuN+C5SzF+Vn1Oe4rhhE0vm3Ps0lh0oaJPbW8cnC/BctZivNzEOe4E8MIuvW+3T0tz5n7LVjOUpyfgzjHnRhG0GlHLeppec7cb8FyluL8HMQ57sQwgsaOXMipKxc2LTt15ULGjlw4zTPy5X4LlrMU5+cgznHfdnuEjW/bw6337ea0oxbVMilMtWffU+63YNlKcX6m2Ee3t912YjAzGxHux2AdVTW32jUGZvXiOoYRVdXcatcYmNWPrxhGUFVzq11jYFZPTgwjqKq51a4xMKsnJ4YRVNXcatcYmNWTE8MIqmputWsMzOrJ01VHWFVzq11jYJaHbqerelbSCFs476C+f1F3s48Ur2Nm1fFbSWZm1sSJoQS5FHTlEodZWXyOl8NvJSWWS0FXLnGYlcXneHl8xZBQLgVducRhVhaf4+VyYkgol4KuXOIwK4vP8XI5MSSUS0FXLnGYlcXneLmcGBLKpaArlzjMyuJzvFwucCtBLgVducRhVhaf473JosBN0sHArcBBxWutj4gPtWxzOvBVYFux6NqIuLzMuMqWS0FXLnGYlcXneDl6SgySXgOsmPq8iFg3w1OeAl4XEfskzQVuk3RjRGxs2W5DRJzZSyzW2cTOvWze/iirli1g5ZL5Pa+Hav4i8199ZnnpOjFI+hzwCmAz8IticQDTJoZovE+1r3g4t/iq33tXNXTZdXezbuMDzz5es3o5l599bNfroZp54p6LbpafXj58HgNOiYh3R8R7i6/3dXqSpDmSNgMPA9+IiNvbbLZa0l2SbpT0yh5isjYmdu5t+qUPsO67DzCxc29X66GaeeKei26Wp14Sw/eBw3t9gYj4RUSsApYCJ0l6VcsmdwAvi4jjgU8B17Xbj6TzJY1LGt+1a1evYYyUzdsfnXF5p/VQzTxxz0U3y1PHt5Ik/QONt3/mA1slfY/GZwcARMRZ3bxQRDwq6RbgTTSSzOTyx6d8f4Okv5K0KCJ2tzz/KuAqaMxK6uY1R9WqZQtmXN5pPVQzT9xz0c3y1M0VwyeAPwM+DPwH4KPF48mvaUlaLGlB8f0hwBuAH7Rsc7gkFd+fVMS0p6ejsCYrl8xnzerlTcvWrF7+7AfMndZDNfPEPRfdLE9d1zFI+tOI+ECnZS3rjwOuBubQ+IX/lYi4XNIFABGxVtJ7gAuBZ4AngUsj4jszxZJ7HUMuPCvJzKbqto6hl8RwR0Sc2LJsS0QcN8sYZ82Jwcysd90mho5vJUm6UNLdwNGStkz52gZsSRHssElxj/iJnXtZP769aaZQ6n10E2cux5KDFGPRaR/uL2A56KaO4YvAjcDHgN+fsnxvRPxrKVHVWIp5+d3UGPS7j27izOVYcpBiLDrtwzUdlotuPnyeAzwOXATsnfKFpBeXF1r9pJiX302NQb/76CbOXI4lBynGotM+XNNhOekmMWwCxot/dwE/Au4rvt9UXmj1k2Jefjc1Bv3uo5s4czmWHKQYi077cE2H5aRjYoiIIyPi5cDXgbdGxKKIWAicCVxbdoB1kmJefjc1Bv3uo5s4czmWHKQYi077cE2H5aSXyudfjYgbJh9ExI3Ar6UPqb5SzMvvpsag3310E2cux5KDFGPRaR+u6bCc9DJd9evABuDzNCqhzwFOi4hfLy+89nKfrppiXn43NQb97qObOHM5lhykGItO+3BNh5WpjDqGFwMfAk4rFt0K/NEgZiblnhjMzHKUvFFPkQAu7isqq5T/Oq2fXK6uconDBqObm+hdERGXTLmZXpNub6Jn1fKc+frJpeYjlzhscLq5Yvhc8e8nygzE0pk6J/7nNGa6vP+aLZyychEL5x3Ucb1Vb7qajzUnr6j0L/Zc4rDB6pgYImKyVmEOsDEinig3JOvX5Jz4yV/68Nyc+IXzDuq43qo3U81Hlb+Qc4nDBquXns/nAmsl7aExO2kDcFtEPFJGYDZ7njNfP7nUfOQShw1W13UMEbEmIn4ZeBuwA/hLGtXPlhnPma+fXGo+conDBquX6arnAKcCxwK7gduADRHx3fLCa8/TVbvjWUn1k8tsoFzisLTKqGPYDfwzsBb4VkTc31eEfXBiMDPrXbJ+DJMiYhHwTuBg4COSvifpcx2eVjtV3HMfqulR4Hv796Yu45Wiz0a/UvTyqOpnzXrX9YfPkg4DlgMvA1YALwT2z/ScuqninvtQzTxx1yn0pi7jlaLPRr9S9PKo6mfNZqeXm+jdBryVRte234yIoyPiv5YTVvWquOc+VNOjwPf2701dxitFn41+pejlUdXPms1eL28lHRcR746IL0bEjtb1kj6VNrRqVXHPfaimR4Hv7d+buoxXij4b/UrRy6OqnzWbvV6uGDo5JeG+KlfFPfehmnnirlPoTV3GK0WfjX6l6OVR1c+azV7KxFBrVdxzH6qZJ+46hd7UZbxS9NnoV4peHlX9rNnsdT1dteOOpDsi4sQkO+ugzOmqVdxzH6qZJ+46hd7UZbxS9NnoV4peHlX9rNlzktcxdPGCd0bECUl21oHrGMzMepe8jqELf5FwX7VWxfzs8W17+ORNP2R8255Zv4bVUxVz91OcXz5H66vjFcN0fRgmDaIfQ85XDFXMzz7nsxu5beK5H7ZTVy7kc+86OdkxWL6qmLuf4vzyOZqnlB3c3IehSyn6HHTax/i2PU0/cAAbJvYwvm0PY0cuTHtAlpUq+mikOL98jtZfN/0Y/m8VgQyDFH0OOu3j1vt2t33erfft9g/dkKuij0aK88vnaP11/RmDpKMkrZe0VdK/TH6VGVzdVDE/+7SjFrV93nTLbXhUMXc/xfnlc7T+evnw+W+BzwDPAP8OWMdzbT+NauZnjx25kFNXNv/VderKhf5LbARUMXc/xfnlc7T+ernt9qaIeLWkuyPi2GLZhog4tdQI28j5w2eoZn72+LY93Hrfbk47apF/4EZMFXP3U5xfPkfzU0Y/hm/TaNSzHrgZ+AnwJxFxdD+BzkbuicHMLEdl1DFcArwAeB/wauC3gRnvrirp4KJvw12S7pH0R222kaQrJU1I2iKpkuppMzNrr5e7q/5TROwDHgfeFxG/EREbOzztKeB1EXE8sAp4k6TWycxnAEcVX+fT+ByjNFU0D0khRTOWXI6l3zi6aWqU4lhTjHkVDZg66aawrNOx5NAMqJvXqcs5nkuc3eqlUc8YjQ+g5xePHwPeGRGbpntONN6n2lc8nFt8tb53dTawrth2o6QFkl4SEQ92fxjdqaJ5SAopmrHkciz9xtFNU6MUx5pizKtowNTJ1MKyK2+eaFtY1ulYcmgG1M3r1OUczyXOXvTyVtLfAO+OiBURsQK4iEaimJGkOZI2Aw8D34iI21s2OQLYPuXxjmJZUlU0D0khRTOWXI6l3zi6aWqU4lhTjHkVDZg6mamwbFKnY8mhGVA3r1OXczyXOHvVS2LYGxEbJh9ExG1Ax7M+In4REauApcBJkl7VsonaPa11gaTzJY1LGt+1a1cPYTdU0TwkhRTNWHI5ln7j6KapUYpjTTHmVTRg6mSmwrJJnY4lh2ZA3bxOXc7xXOLsVS+J4XuS/qek0yX9mqS/Am6RdGI3HxhHxKPALcCbWlbtAJZNebwU+Gmb518VEWMRMbZ48eIewi52WkHzkBRSNGPJ5Vj6jaObpkYpjjXFmFfRgKmTbgrLOh1LDs2AunmdupzjucTZq14Swyrgl4EPAR8GfgV4DfBnTHM/JUmLJS0ovj8EeAPwg5bNvgasKWYnnQw8VsbnC1U0D0khRTOWXI6l3zi6aWqU4lhTjHkVDZg66aawrNOx5NAMqJvXqcs5nkucvUrWj6HtzqXjgKuBOTSS0Fci4nJJFwBExFpJAj5N40riCeC8iJixSKGfOoYqmoekkKIZSy7H0m8c3TQ1SnGsKca8igZMnXRTWNbpWHJoBtTN69TlHM8lzjIK3JYAHwVeGhFnSDoGWB0Rf91fqL1zgZuZWe/KKHD7O+DrwEuLxz+iUfQ2VOo233gU5FKzkSKOFPPdq2gENUxG6VhT6bqOAVgUEV+R9EGAiHhG0i9Kimsg6jjfeNjlUrORIo4U892raAQ1TEbpWFPq5YrhZ5IWUkwlnfyguJSoBqCu842HWS41GyniSDHfPcWxjtJ5PkrHmlovieFSGjOIXlHcUG8d8N5SohqAus43Hma51GykiCPFfPcUxzpK5/koHWtqvSSGV9C4r9FraHzWcB+9vRWVtbrONx5mudRspIgjxXz3KhpBDZNROtbUekkMfxgRjwMvolGPcBUl3/CuSnWdbzzMcqnZSBFHivnuVTSCGiajdKyp9TJd9c6IOEHSx4C7I+KLk8vKDfH5ypyumst8Y3tOLjUbKeJIMd+9ikZQw2SUjrWTMuoYrqfRnOcNNPoxPAl8r7ildqVcx2Bm1rsy6hj+M43PFt5U3PfoxcB/n2V8Zl1L0Qehqrns/cZRl2MdptoAj9fzdf3hcUQ8AVw75fGDQPJ7GplNlaIPQlVz2fuNoy7HOky1AR6v9nq5YjCrVIo+CFXNZe83jroc6zDVBni8pufEYNlK0Qehqrns/cZRl2MdptoAj9f0nBgsWyn6IFQ1l73fOOpyrMNUG+Dxmp4Tg2UrRR+Equay9xtHXY51mGoDPF7TK7UfQ1k8XXW0pOiDUNVc9n7jqMuxDlNtwCiNV/I6hpw4MZiZ9a6MOgYbQTnMv04Rwze3PsQH1t/FN7c+NNA4UrxGDv8nNtyG5iZ4ll4O869TxPDGP7+FH+38GQD/a3wHRy85lK//zumVx5HiNXL4P7Hh5ysGayuH+dcpYvjm1oeeTQqTfrjzZz1dOeQy3z2H/xMbDU4M1lYO869TxHDT1p09LS8rjhSvkcP/iY0GJwZrK4f51ylieOMxS3paXlYcKV4jh/8TGw1ODNZWDvOvU8Tw+mMO5+glhzYtO3rJobz+mMMrjSPFa+Twf2KjwdNVbUY5zL9OEcM3tz7ETVt38sZjlvSUFFLHkeI1cvg/sXpyHYOZmTVxHYPVRop5+Sn6HKTgGgNrp27nhesYbKBSzMtP0ecgBdcYWDt1PC98xWADk2Jefoo+B7kciw2fup4XTgw2MCnm5afoc5CCawysnbqeF04MNjAp5uWn6HOQgmsMrJ26nhdODDYwKeblp+hzkMux2PCp63nh6ao2cCnm5afoc5CCawysnVzOi26nq3pWkg3cwnkH9f3D0mkfKV4jRRw2mup2XpT6VpKkZZK+JeleSfdIurjNNqdLekzS5uLrsjJjGhZVzP2vSooahFyOpV8TO/eyfnw7Ezv3DjSOYRlPm52yrxieAX43Iu6QNB/YJOkbEbG1ZbsNEXFmybEMjSrm/lclRQ1CLsfSr8uuu5t1Gx949vGa1cu5/OxjK49jWMbTZq/UK4aIeDAi7ii+3wvcC/gM60MVc/+rkqIGIZdj6dfEzr1NSQFg3XcfqPzKYVjG0/pT2awkSSuAE4Db26xeLekuSTdKeuU0zz9f0rik8V27dpUYad6qmPtflRQ1CLkcS782b3+0p+VlGZbxtP5UkhgkzQOuAS6JiMdbVt8BvCwijgc+BVzXbh8RcVVEjEXE2OLFi8sNOGNVzP2vSooahFyOpV+rli3oaXlZhmU8rT+lJwZJc2kkhS9ExLWt6yPi8YjYV3x/AzBX0qKy46qrKub+VyVFDUIux9KvlUvms2b18qZla1YvZ+WS+ZXGMSzjaf0ptY5BkoCrgX+NiEum2eZwYGdEhKSTgPU0riCmDcx1DNXM/a9KihqEXI6lXxM797J5+6OsWrag8qQw1bCMpzXLoh+DpNcCG4C7gcnr0z8AlgNExFpJ7wEupDGD6Ung0oj4zkz7dWIwM+tdFgVuEXEboA7bfBr4dJlxmJlZ93yvpJoapgKkXIq6zKzBt8SooWEqQMqlqMvMnuMrhpoZpgKkXIq6zKyZE0PNDFMBUi5FXWbWzImhZoapACmXoi4za+bEUDPDVICUS1GXmTVzo56aGqYCpFyKusyGXRZ1DFaeujX+mMnKJfOdEMwy4reSZqEuNQSOs348FpYDXzH0qC41BI6zfjwWlgtfMfSgLjUEjrN+PBaWEyeGHtSlhsBx1o/HwnLixNCDutQQOM768VhYTpwYelCXGgLHWT8eC8uJ6xhmoS41BI6zfjwWVibXMZSoLjUEjrN+PBaWA7+VZNalFH0jXKdgdeArBrMupOgb4ToFqwtfMZh1kKJvhOsUrE6cGMw6SNE3wnUKVidODGYdpOgb4ToFqxMnBrMOUvSNcJ2C1YnrGMy6lKJvhOsUbJBcx2CWWIq+Ea5TsDrwW0lmZtbEicHMzJo4MZiZWRMnBjMza+LEYGZmTZwYzMysiRODmZk1KTUxSFom6VuS7pV0j6SL22wjSVdKmpC0RdKJZcZkZmYzK/uK4RngdyPiV4CTgYskHdOyzRnAUcXX+cBnSo5pZPje/2Y2G6VWPkfEg8CDxfd7Jd0LHAFsnbLZ2cC6aNybY6OkBZJeUjzXZsn3/jez2arsMwZJK4ATgNtbVh0BbJ/yeEexzGbJ9/43s35UkhgkzQOuAS6JiMdbV7d5yvPu7CfpfEnjksZ37dpVRphDw/f+N7N+lJ4YJM2lkRS+EBHXttlkB7BsyuOlwE9bN4qIqyJiLCLGFi9eXE6wQ8L3/jezfpQ9K0nAXwP3RsQnp9nsa8CaYnbSycBj/nyhP773v5n1o+zbbp8C/DZwt6TNxbI/AJYDRMRa4AbgzcAE8ARwXskxjYSzVh3BKSsX+d7/Ztazsmcl3Ub7zxCmbhPARWXGMap8738zmw1XPpuZWRMnBjMza+LEYGZmTZwYzMysiRODmZk1cWIwM7MmaswWrRdJu4AfDziMRcDuAcfQDceZluNMy3GmN1OsL4uIjreOqGViyIGk8YgYG3QcnTjOtBxnWo4zvRSx+q0kMzNr4sRgZmZNnBhm76pBB9Alx5mW40zLcabXd6z+jMHMzJr4isHMzJo4MXQgaY6kOyVd32bd6ZIek7S5+LpsEDEWsdwv6e4ijvE26yXpSkkTkrZIOjHTOLMY06L3+HpJP5B0r6TVLetzGc9OcQ58PCUdPeX1N0t6XNIlLdsMfDy7jHPg41nE8TuS7pH0fUlfknRwy/r+xjMi/DXDF3Ap8EXg+jbrTm+3fEBx3g8smmH9m4EbadwG/WTg9kzjzGJMgauBdxXf/xKwINPx7BRnFuM5JZ45wEM05tNnN55dxDnw8QSOALYBhxSPvwKcm3I8fcUwA0lLgbcAnx10LAmcDayLho3AAkkvGXRQOZJ0GHAaje6DRMT/i4hHWzYb+Hh2GWduXg/8c0S0FqgOfDxbTBdnLg4EDpF0IPACnt8Oua/xdGKY2RXA+4H9M2yzWtJdkm6U9MqK4mongJskbZJ0fpv1RwDbpzzeUSyrWqc4YfBj+nJgF/C3xduIn5V0aMs2OYxnN3HC4MdzqncAX2qzPIfxnGq6OGHA4xkRPwE+ATwAPEijHfJNLZv1NZ5ODNOQdCbwcERsmmGzO2hcah4PfAq4rpLg2jslIk4EzgAuknRay/p2nfQGMSWtU5w5jOmBwInAZyLiBOBnwO+3bJPDeHYTZw7jCYCkXwLOAv53u9Vtlg1kymSHOAc+npJeROOK4EjgpcChks5p3azNU7seTyeG6Z0CnCXpfuDLwOskfX7qBhHxeETsK76/AZgraVHlkTZe/6fFvw8Dfw+c1LLJDmDZlMdLef7lZ+k6xZnJmO4AdkTE7cXj9TR+AbduM+jx7BhnJuM56QzgjojY2WZdDuM5ado4MxnPNwDbImJXRDwNXAu8pmWbvsbTiWEaEfHBiFgaEStoXFbeHBFNWVnS4ZJUfH8SjfHcU3Wskg6VNH/ye+CNwPdbNvsasKaYrXAyjcvPB3OLM4cxjYiHgO2Sji4WvR7Y2rLZwMezmzhzGM8p/gvTvz0z8PGcYto4MxnPB4CTJb2giOX1wL0t2/Q1ngemi3U0SLoAICLWAm8HLpT0DPAk8I4opgRUbAnw98X5eiDwxYj4x5ZYb6AxU2ECeAI4L9M4cxnT9wJfKN5W+BfgvAzHs5s4sxhPSS8A/j3w36Ysy248u4hz4OMZEbdLWk/jba1ngDuBq1KOpyufzcysid9KMjOzJk4MZmbWxInBzMyaODGYmVkTJwYzM2vixGBmZk2cGMx6oMZtl593C/Yp68+V9OkSXvdcSS+d8vj+AVYw25BzYjCrh3Np3BfHrHSufLahU9xu4ys07g8zB/hjGhWgnwTmAbtp3L/+QUm3AJtp3LPpMOCdEfG94nYHVwCH0KhwPS8ifthjHIuBtcDyYtElEfFtSR8ulr28+PeKiLiyeM4fAr9F486Yu4FNNHpYjNGocH4SmGzG815JbwXmAv8pIn7QS3xm0/EVgw2jNwE/jYjjI+JVwD/SuBPm2yPi1cDfAB+Zsv2hEfEa4N3FOoAfAKcVdy29DPjoLOL4C+DPI+JXgbfR3Nfj3wC/TiMhfUjSXEljxXYnAL9BIxkQEeuBceC3ImJVRDxZ7GN3cafazwC/N4v4zNryFYMNo7uBT0j6U+B64BHgVcA3ivs0zaFxH/tJXwKIiFslHSZpATAfuFrSUTRuVzx3FnG8ATimeE2AwyZvIgj8n4h4CnhK0sM07iP1WuCrk7/4Jf1Dh/1fW/y7iUYiMUvCicGGTkT8SNKradxE7GPAN4B7ImL1dE9p8/iPgW9FxH+UtAK4ZRahHACsnvIXPgBFonhqyqJf0PhZbHcP/ZlM7mPy+WZJ+K0kGzrF7J0nIuLzNDpd/VtgsaTVxfq5LZ23frNY/loatyd+DHgh8JNi/bmzDOUm4D1T4lrVYfvbgLdKOljSPBptZSftpXEVY1Y6/5Vhw+hY4H9I2g88DVxI4/bEV0p6IY3z/grgnmL7RyR9h+LD52LZx2m8lXQpcPMs43gf8JeSthSveStwwXQbR8Q/SfoacBfwYxqfKzxWrP47YG3Lh89mpfBtt22kFbOSfi8ixgcdC4CkeRGxr+gLcCtwfkTcMei4bLT4isEsL1dJOgY4GLjaScEGwVcMZrMg6Tzg4pbF346IiwYRj1lKTgzinh9aAAAAJklEQVRmZtbEs5LMzKyJE4OZmTVxYjAzsyZODGZm1sSJwczMmvx/lm1f/i3UijYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax2 = df.plot.scatter(x='sepal_length',\n", + " y='sepal_width')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 : 0\n", + "1 : 1\n", + "2 : 4\n", + "3 : 9\n", + "4 : 16\n", + "5 : 25\n", + "6 : 36\n", + "7 : 49\n", + "8 : 64\n", + "9 : 81\n", + "10 : 100\n", + "11 : 121\n", + "12 : 144\n", + "13 : 169\n", + "14 : 196\n", + "15 : 225\n", + "16 : 256\n", + "17 : 289\n", + "18 : 324\n", + "19 : 361\n", + "20 : 400\n", + "21 : 441\n", + "22 : 484\n", + "23 : 529\n", + "24 : 576\n", + "25 : 625\n", + "26 : 676\n", + "27 : 729\n", + "28 : 784\n", + "29 : 841\n", + "30 : 900\n", + "31 : 961\n", + "32 : 1024\n", + "33 : 1089\n", + "34 : 1156\n", + "35 : 1225\n", + "36 : 1296\n", + "37 : 1369\n", + "38 : 1444\n", + "39 : 1521\n", + "40 : 1600\n", + "41 : 1681\n", + "42 : 1764\n", + "43 : 1849\n", + "44 : 1936\n", + "45 : 2025\n", + "46 : 2116\n", + "47 : 2209\n", + "48 : 2304\n", + "49 : 2401\n", + "50 : 2500\n", + "51 : 2601\n", + "52 : 2704\n", + "53 : 2809\n", + "54 : 2916\n", + "55 : 3025\n", + "56 : 3136\n", + "57 : 3249\n", + "58 : 3364\n", + "59 : 3481\n", + "60 : 3600\n", + "61 : 3721\n", + "62 : 3844\n", + "63 : 3969\n", + "64 : 4096\n", + "65 : 4225\n", + "66 : 4356\n", + "67 : 4489\n", + "68 : 4624\n", + "69 : 4761\n", + "70 : 4900\n", + "71 : 5041\n", + "72 : 5184\n", + "73 : 5329\n", + "74 : 5476\n", + "75 : 5625\n", + "76 : 5776\n", + "77 : 5929\n", + "78 : 6084\n", + "79 : 6241\n", + "80 : 6400\n", + "81 : 6561\n", + "82 : 6724\n", + "83 : 6889\n", + "84 : 7056\n", + "85 : 7225\n", + "86 : 7396\n", + "87 : 7569\n", + "88 : 7744\n", + "89 : 7921\n", + "90 : 8100\n", + "91 : 8281\n", + "92 : 8464\n", + "93 : 8649\n", + "94 : 8836\n", + "95 : 9025\n", + "96 : 9216\n", + "97 : 9409\n", + "98 : 9604\n", + "99 : 9801\n", + "100 : 10000\n", + "101 : 10201\n", + "102 : 10404\n", + "103 : 10609\n", + "104 : 10816\n", + "105 : 11025\n", + "106 : 11236\n", + "107 : 11449\n", + "108 : 11664\n", + "109 : 11881\n", + "110 : 12100\n", + "111 : 12321\n", + "112 : 12544\n", + "113 : 12769\n", + "114 : 12996\n", + "115 : 13225\n", + "116 : 13456\n", + "117 : 13689\n", + "118 : 13924\n", + "119 : 14161\n", + "120 : 14400\n", + "121 : 14641\n", + "122 : 14884\n", + "123 : 15129\n", + "124 : 15376\n", + "125 : 15625\n", + "126 : 15876\n", + "127 : 16129\n", + "128 : 16384\n", + "129 : 16641\n", + "130 : 16900\n", + "131 : 17161\n", + "132 : 17424\n", + "133 : 17689\n", + "134 : 17956\n", + "135 : 18225\n", + "136 : 18496\n", + "137 : 18769\n", + "138 : 19044\n", + "139 : 19321\n", + "140 : 19600\n", + "141 : 19881\n", + "142 : 20164\n", + "143 : 20449\n", + "144 : 20736\n", + "145 : 21025\n", + "146 : 21316\n", + "147 : 21609\n", + "148 : 21904\n", + "149 : 22201\n", + "150 : 22500\n", + "151 : 22801\n", + "152 : 23104\n", + "153 : 23409\n", + "154 : 23716\n", + "155 : 24025\n", + "156 : 24336\n", + "157 : 24649\n", + "158 : 24964\n", + "159 : 25281\n", + "160 : 25600\n", + "161 : 25921\n", + "162 : 26244\n", + "163 : 26569\n", + "164 : 26896\n", + "165 : 27225\n", + "166 : 27556\n", + "167 : 27889\n", + "168 : 28224\n", + "169 : 28561\n", + "170 : 28900\n", + "171 : 29241\n", + "172 : 29584\n", + "173 : 29929\n", + "174 : 30276\n", + "175 : 30625\n", + "176 : 30976\n", + "177 : 31329\n", + "178 : 31684\n", + "179 : 32041\n", + "180 : 32400\n", + "181 : 32761\n", + "182 : 33124\n", + "183 : 33489\n", + "184 : 33856\n", + "185 : 34225\n", + "186 : 34596\n", + "187 : 34969\n", + "188 : 35344\n", + "189 : 35721\n", + "190 : 36100\n", + "191 : 36481\n", + "192 : 36864\n", + "193 : 37249\n", + "194 : 37636\n", + "195 : 38025\n", + "196 : 38416\n", + "197 : 38809\n", + "198 : 39204\n", + "199 : 39601\n", + "200 : 40000\n", + "201 : 40401\n", + "202 : 40804\n", + "203 : 41209\n", + "204 : 41616\n", + "205 : 42025\n", + "206 : 42436\n", + "207 : 42849\n", + "208 : 43264\n", + "209 : 43681\n", + "210 : 44100\n", + "211 : 44521\n", + "212 : 44944\n", + "213 : 45369\n", + "214 : 45796\n", + "215 : 46225\n", + "216 : 46656\n", + "217 : 47089\n", + "218 : 47524\n", + "219 : 47961\n", + "220 : 48400\n", + "221 : 48841\n", + "222 : 49284\n", + "223 : 49729\n", + "224 : 50176\n", + "225 : 50625\n", + "226 : 51076\n", + "227 : 51529\n", + "228 : 51984\n", + "229 : 52441\n", + "230 : 52900\n", + "231 : 53361\n", + "232 : 53824\n", + "233 : 54289\n", + "234 : 54756\n", + "235 : 55225\n", + "236 : 55696\n", + "237 : 56169\n", + "238 : 56644\n", + "239 : 57121\n", + "240 : 57600\n", + "241 : 58081\n", + "242 : 58564\n", + "243 : 59049\n", + "244 : 59536\n", + "245 : 60025\n", + "246 : 60516\n", + "247 : 61009\n", + "248 : 61504\n", + "249 : 62001\n", + "250 : 62500\n", + "251 : 63001\n", + "252 : 63504\n", + "253 : 64009\n", + "254 : 64516\n", + "255 : 65025\n", + "256 : 65536\n", + "257 : 66049\n", + "258 : 66564\n", + "259 : 67081\n", + "260 : 67600\n", + "261 : 68121\n", + "262 : 68644\n", + "263 : 69169\n", + "264 : 69696\n", + "265 : 70225\n", + "266 : 70756\n", + "267 : 71289\n", + "268 : 71824\n", + "269 : 72361\n", + "270 : 72900\n", + "271 : 73441\n", + "272 : 73984\n", + "273 : 74529\n", + "274 : 75076\n", + "275 : 75625\n", + "276 : 76176\n", + "277 : 76729\n", + "278 : 77284\n", + "279 : 77841\n", + "280 : 78400\n", + "281 : 78961\n", + "282 : 79524\n", + "283 : 80089\n", + "284 : 80656\n", + "285 : 81225\n", + "286 : 81796\n", + "287 : 82369\n", + "288 : 82944\n", + "289 : 83521\n", + "290 : 84100\n", + "291 : 84681\n", + "292 : 85264\n", + "293 : 85849\n", + "294 : 86436\n", + "295 : 87025\n", + "296 : 87616\n", + "297 : 88209\n", + "298 : 88804\n", + "299 : 89401\n", + "300 : 90000\n", + "301 : 90601\n", + "302 : 91204\n", + "303 : 91809\n", + "304 : 92416\n", + "305 : 93025\n", + "306 : 93636\n", + "307 : 94249\n", + "308 : 94864\n", + "309 : 95481\n", + "310 : 96100\n", + "311 : 96721\n", + "312 : 97344\n", + "313 : 97969\n", + "314 : 98596\n", + "315 : 99225\n", + "316 : 99856\n", + "317 : 100489\n", + "318 : 101124\n", + "319 : 101761\n", + "320 : 102400\n", + "321 : 103041\n", + "322 : 103684\n", + "323 : 104329\n", + "324 : 104976\n", + "325 : 105625\n", + "326 : 106276\n", + "327 : 106929\n", + "328 : 107584\n", + "329 : 108241\n", + "330 : 108900\n", + "331 : 109561\n", + "332 : 110224\n", + "333 : 110889\n", + "334 : 111556\n", + "335 : 112225\n", + "336 : 112896\n", + "337 : 113569\n", + "338 : 114244\n", + "339 : 114921\n", + "340 : 115600\n", + "341 : 116281\n", + "342 : 116964\n", + "343 : 117649\n", + "344 : 118336\n", + "345 : 119025\n", + "346 : 119716\n", + "347 : 120409\n", + "348 : 121104\n", + "349 : 121801\n", + "350 : 122500\n", + "351 : 123201\n", + "352 : 123904\n", + "353 : 124609\n", + "354 : 125316\n", + "355 : 126025\n", + "356 : 126736\n", + "357 : 127449\n", + "358 : 128164\n", + "359 : 128881\n", + "360 : 129600\n", + "361 : 130321\n", + "362 : 131044\n", + "363 : 131769\n", + "364 : 132496\n", + "365 : 133225\n", + "366 : 133956\n", + "367 : 134689\n", + "368 : 135424\n", + "369 : 136161\n", + "370 : 136900\n", + "371 : 137641\n", + "372 : 138384\n", + "373 : 139129\n", + "374 : 139876\n", + "375 : 140625\n", + "376 : 141376\n", + "377 : 142129\n", + "378 : 142884\n", + "379 : 143641\n", + "380 : 144400\n", + "381 : 145161\n", + "382 : 145924\n", + "383 : 146689\n", + "384 : 147456\n", + "385 : 148225\n", + "386 : 148996\n", + "387 : 149769\n", + "388 : 150544\n", + "389 : 151321\n", + "390 : 152100\n", + "391 : 152881\n", + "392 : 153664\n", + "393 : 154449\n", + "394 : 155236\n", + "395 : 156025\n", + "396 : 156816\n", + "397 : 157609\n", + "398 : 158404\n", + "399 : 159201\n", + "400 : 160000\n", + "401 : 160801\n", + "402 : 161604\n", + "403 : 162409\n", + "404 : 163216\n", + "405 : 164025\n", + "406 : 164836\n", + "407 : 165649\n", + "408 : 166464\n", + "409 : 167281\n", + "410 : 168100\n", + "411 : 168921\n", + "412 : 169744\n", + "413 : 170569\n", + "414 : 171396\n", + "415 : 172225\n", + "416 : 173056\n", + "417 : 173889\n", + "418 : 174724\n", + "419 : 175561\n", + "420 : 176400\n", + "421 : 177241\n", + "422 : 178084\n", + "423 : 178929\n", + "424 : 179776\n", + "425 : 180625\n", + "426 : 181476\n", + "427 : 182329\n", + "428 : 183184\n", + "429 : 184041\n", + "430 : 184900\n", + "431 : 185761\n", + "432 : 186624\n", + "433 : 187489\n", + "434 : 188356\n", + "435 : 189225\n", + "436 : 190096\n", + "437 : 190969\n", + "438 : 191844\n", + "439 : 192721\n", + "440 : 193600\n", + "441 : 194481\n", + "442 : 195364\n", + "443 : 196249\n", + "444 : 197136\n", + "445 : 198025\n", + "446 : 198916\n", + "447 : 199809\n", + "448 : 200704\n", + "449 : 201601\n", + "450 : 202500\n", + "451 : 203401\n", + "452 : 204304\n", + "453 : 205209\n", + "454 : 206116\n", + "455 : 207025\n", + "456 : 207936\n", + "457 : 208849\n", + "458 : 209764\n", + "459 : 210681\n", + "460 : 211600\n", + "461 : 212521\n", + "462 : 213444\n", + "463 : 214369\n", + "464 : 215296\n", + "465 : 216225\n", + "466 : 217156\n", + "467 : 218089\n", + "468 : 219024\n", + "469 : 219961\n", + "470 : 220900\n", + "471 : 221841\n", + "472 : 222784\n", + "473 : 223729\n", + "474 : 224676\n", + "475 : 225625\n", + "476 : 226576\n", + "477 : 227529\n", + "478 : 228484\n", + "479 : 229441\n", + "480 : 230400\n", + "481 : 231361\n", + "482 : 232324\n", + "483 : 233289\n", + "484 : 234256\n", + "485 : 235225\n", + "486 : 236196\n", + "487 : 237169\n", + "488 : 238144\n", + "489 : 239121\n", + "490 : 240100\n", + "491 : 241081\n", + "492 : 242064\n", + "493 : 243049\n", + "494 : 244036\n", + "495 : 245025\n", + "496 : 246016\n", + "497 : 247009\n", + "498 : 248004\n", + "499 : 249001\n" + ] + } + ], + "source": [ + "for i in range(500):\n", + " print(i,\":\",i**2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can even launch a browser pop-up through IPython:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "alert(\"Hello PyCon\")" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Javascript\n", + "Javascript('alert(\"Hello PyCon\")')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The end. 🎉" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/4-JupyterLab-UI/Exercise1.md b/4-JupyterLab-UI/Exercise1.md new file mode 100644 index 0000000..35a3259 --- /dev/null +++ b/4-JupyterLab-UI/Exercise1.md @@ -0,0 +1,51 @@ +# Exercises 1 + +Remove all the sticky notes from your screen :-) and attempt the following. +These are _guidelines_, feel free to err on the side of workflow and +options that suits _you_ if you find them best. + +Keep in mind, if something is not intuitive, or not in the place you expected +it, write it down (for example on the red sticky note), and give it to us at the +break. + +## View this file as rendered markdown. + +Right-click on the `Exercise1.md` file and open it as rendered markdown. + +## Layout + +Create a new notebook. + +Arrange the notebook and rendered markdown side-by-side. Then arrange them, one on top and one on bottom. Then arrange them in a single panel with two tabs. Then split them out again to side-by-side. + +## Notebook operations + +- Change the first cell to markdown, and write some markdown with + - Bold + - italic + - [Math](https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference) (inlne and formulas): `$f(x) = a.x^2+b.x+c$`, `$$x_\pm = \frac{-b \pm \sqrt(b^2-4ac)}{2a}$$` + - Code (triple backtick fences ` ``` `, or indented 4 spaces) +- Create a code cell and evaluate it, printing "Hello PyCon" + - Experiment with the run shortcuts `Ctrl-Enter`, `Shift-Enter`, and `Alt-Enter` and note the differences between them (see the Run menu for help). + - try importing `pandas` + - evaluate `pandas?` to get the help on the pandas library. + - try `pandas.D` to get tab completion on the pandas library. Note that completions can take a few second the first time the library get inspected to get result. + - Complete to `pandas.DataFrame(` place the cursor after the open bracket and press `Shift-Tab` to get quick help. + - To always see the info about the current function you can open the inspector via the command palette. + - Use the command palette the find the Keyboard shortcut to open the inspector. + - Move the inspector tab somewhere so that you can see both it and the notebook. + - Type `pandas.read_csv(` to see the inspector display function help. + - Use panda’s `read_csv` to load `'../data/iris.csv'` into a dataframe, display this dataframe + - open `'../data/iris.csv'` as a standalone CSV file. + - use `%matpltolib inline` to allow inline graphs, + - make a scatter plot of `sepal_length` vs `sepal_width`. + + +# More advanced notebooks + +- Move a cell by dragging. +- Use the View menu, or click the blue bar, to collapse and expand an input and an output. +- Use the context menu to enable scrolling in a cell that has lots of output. +- Try “Create new view for output” in the context menu of an output. Modify and execute the cell again to see the mirrored output update (will learn more in section 2). +- Learn the various keyboard shortcuts through the menu and the command palette. +- Learn more about kernel functionality (more on that in the exercise solution). diff --git a/5 - Rich Output.ipynb b/5 - Rich Output.ipynb new file mode 100644 index 0000000..9f43eca --- /dev/null +++ b/5 - Rich Output.ipynb @@ -0,0 +1,992 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rich Output" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In Python, objects can declare their textual representation using the `__repr__` method. IPython expands on this idea and allows objects to declare other, rich representations including:\n", + "\n", + "* HTML\n", + "* JSON\n", + "* PNG\n", + "* JPEG\n", + "* SVG\n", + "* LaTeX\n", + "\n", + "A single object can declare some or all of these representations; all are handled by IPython's *display system*. This Notebook shows how you can use this display system to incorporate a broad range of content into your Notebooks." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Basic display imports" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `display` function is a general purpose tool for displaying different representations of objects. Think of it as `print` for these rich representations." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# display is injected in default namespace, but it's a good idea to be explicit.\n", + "from IPython.display import display" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A few points:\n", + "\n", + "* Calling `display` on an object will send **all** possible representations to the Notebook.\n", + "* These representations are stored in the Notebook document.\n", + "* In general the Notebook will use the richest available representation.\n", + "\n", + "If you want to display a particular representation, there are specific functions for that:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from IPython.display import (\n", + " display_pretty, display_html, display_jpeg,\n", + " display_png, display_json, display_latex, display_svg\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Images" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To work with images (JPEG, PNG) use the `Image` class." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from IPython.display import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "i = Image(filename='images/ipython_logo.png')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Returning an `Image` object from an expression will automatically display it:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1oCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4pBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+QxGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1MaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQlsCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHYFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VTFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6uCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIkJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeAH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnuXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKUIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2yss/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJePgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWlfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyWD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2cZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4MdYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwHrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19GwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrYOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EHpgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HCXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXESvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GYq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5WA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECkGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5tcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkwfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11VZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbehj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+gph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4by6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyKTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6MBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTXyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4s0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9RIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163kt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaGmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YSLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/ph345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8MGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hbaWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UWKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUriVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29oOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvsr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rSTS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6L0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2hrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkKa7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIkz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0FofUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwCS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1yzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3Je22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgFoTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgmeWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5UeZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3NRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxbzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7oM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VSA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLFuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66evGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7brXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOMLkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7fHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYqvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuufi2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYwsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADTs0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rIb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMRlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFqsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7jRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTitzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/AfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mYKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGisR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3liu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99DeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8GskzdVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8cI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+JZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdlu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/ltuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbAc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0bgReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8kcny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvLKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgMXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7frAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMRp8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uThYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUhoY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9vlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTRYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWRZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcRR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SMpN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4FIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8fUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09tT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1moZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQXV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0VdP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80sZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dSTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7S6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJCYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9FYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7I7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GAqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1FyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQrOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYSNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4ixOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbRegJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcqxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697IlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRSagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbrT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKOTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGOyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWdt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJdv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78HMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "i" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or you can pass an object with a rich representation to `display`:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1oCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4pBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+QxGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1MaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQlsCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHYFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VTFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6uCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIkJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeAH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnuXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKUIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2yss/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJePgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWlfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyWD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2cZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4MdYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwHrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19GwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrYOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EHpgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HCXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXESvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GYq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5WA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECkGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5tcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkwfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11VZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbehj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+gph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4by6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyKTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6MBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTXyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4s0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9RIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163kt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaGmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YSLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/ph345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8MGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hbaWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UWKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUriVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29oOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvsr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rSTS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6L0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2hrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkKa7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIkz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0FofUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwCS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1yzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3Je22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgFoTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgmeWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5UeZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3NRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxbzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7oM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VSA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLFuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66evGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7brXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOMLkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7fHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYqvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuufi2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYwsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADTs0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rIb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMRlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFqsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7jRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTitzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/AfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mYKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGisR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3liu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99DeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8GskzdVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8cI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+JZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdlu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/ltuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbAc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0bgReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8kcny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvLKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgMXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7frAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMRp8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uThYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUhoY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9vlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTRYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWRZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcRR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SMpN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4FIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8fUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09tT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1moZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQXV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0VdP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80sZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dSTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7S6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJCYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9FYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7I7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GAqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1FyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQrOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYSNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4ixOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbRegJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcqxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697IlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRSagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbrT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKOTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGOyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWdt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJdv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78HMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An image can also be displayed from raw data or a URL." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image(url='http://python.org/images/python-logo.gif')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "SVG images are also supported out of the box." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " image/svg+xml\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import SVG\n", + "SVG(filename='./images/python_logo.svg')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Embedded vs non-embedded Images" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By default, image data is embedded in the notebook document so that the images can be viewed offline. However it is also possible to tell the `Image` class to only store a *link* to the image. Let's see how this works using a webcam at Berkeley." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from IPython.display import Image\n", + "img_url = 'http://www.lawrencehallofscience.org/static/scienceview/scienceview.berkeley.edu/html/view/view_assets/images/newview.jpg'\n", + "\n", + "# by default Image data are embedded\n", + "Embed = Image(img_url)\n", + "\n", + "# if kwarg `url` is given, the embedding is assumed to be false\n", + "SoftLinked = Image(url=img_url)\n", + "\n", + "# In each case, embed can be specified explicitly with the `embed` kwarg\n", + "# ForceEmbed = Image(url=img_url, embed=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is the embedded version. Note that this image was pulled from the webcam when this code cell was originally run and stored in the Notebook. Unless we rerun this cell, this is not todays image." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEBLAEsAAD//gAdQ29weXJpZ2h0IDIwMTkgVS5DLiBSZWdlbnRz/+H//kV4aWYAAElJKgAIAAAACwAPAQIAEgAAAJQAAAAQAQIACwAAAKgAAAASAQMAAQAAAAEAAAAaAQUAAQAAALQAAAAbAQUAAQAAALwAAAAoAQMAAQAAAAIAAAAxAQIACwAAAMQAAAAyAQIAFAAAANAAAAATAgMAAQAAAAEAAABphwQAAQAAAOQAAAAliAQAAQAAAEhdAABcXQAAAABOSUtPTiBDT1JQT1JBVElPTgAAAE5JS09OIDEgSjUAACwBAAABAAAALAEAAAEAAABWZXIuMS4wMCAgAAAyMDE5OjA0OjI3IDIzOjU4OjAyACkAmoIFAAEAAADYAgAAnYIFAAEAAADgAgAAIogDAAEAAAACAAAAJ4gDAAEAAADIAAAAMIgDAAEAAAACAAAAAJAHAAQAAAAwMjMwA5ACABQAAADoAgAABJACABQAAAD8AgAAAZEHAAQAAAABAgMAApEFAAEAAAAQAwAABJIKAAEAAAAYAwAABZIFAAEAAAAgAwAAB5IDAAEAAAAFAAAACJIDAAEAAAAJAAAACZIDAAEAAAAAAAAACpIFAAEAAAAoAwAAfJIHAKhZAACAAwAAkJICAAMAAAA2MwAAkZICAAMAAAA2MwAAkpICAAMAAAA2MwAAAKAHAAQAAAAwMTAwAaADAAEAAAABAAAAAqADAAEAAADgCgAAA6ADAAEAAABABwAABaAEAAEAAAAoXQAAF6IDAAEAAAACAAAAAKMHAAEAAAADAAAAAaMHAAEAAAABAAAAAqMHAAgAAAAwAwAAAaQDAAEAAAAAAAAAAqQDAAEAAAAAAAAAA6QDAAEAAAABAAAABKQFAAEAAAA4AwAABaQDAAEAAAArAAAABqQDAAEAAAAAAAAAB6QDAAEAAAAAAAAACKQDAAEAAAAAAAAACaQDAAEAAAAAAAAACqQDAAEAAAAAAAAADKQDAAEAAAAAAAAANKQCAEAAAABAAwAAAAAAAAAACgAAAMQJAAAtAAAACgAAADIwMTk6MDQ6MjcgMjM6NTg6MDIAMjAxOTowNDoyNyAyMzo1ODowMgACAAAAAQAAAAAAAAAGAAAAKwAAAAoAAAChAAAACgAAAAIAAgAAAQECAQAAAAEAAAAxIE5JS0tPUiBWUiAxMC0zMG1tIGYvMy41LTUuNiBQRC1aT09NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATmlrb24AAhEAAElJKgAIAAAANwABAAcABAAAADAyMTECAAMAAgAAAAAAyAAEAAIACAAAAKICAAAFAAIADQAAAKoCAAAHAAIABwAAALoCAAAIAAIADQAAAMICAAAJAAIAFAAAANICAAALAAgAAgAAAAAAAAAMAAUABAAAAOYCAAANAAcABAAAAAABBgAOAAcABAAAAAABDAASAAcABAAAAAABBgAWAAMABAAAAAYDAAAXAAcABAAAAAABBgAbAAMABwAAAA4DAAAdAAIACQAAAB4DAAAeAAMAAQAAAAEAAAAfAAcACAAAACoDAAAiAAMAAQAAAP//AAAjAAcAOgAAADIDAAAkAAcABAAAACD+AQElAAcADgAAAG4DAAArAAcAEAAAAH4DAAAsAAcAXgAAAI4DAAAtAAMAAwAAAO4DAAAyAAcACAAAAPYDAAA0AAMAAQAAABAAAAA1AAcABgAAAP4DAAA2AAcABgAAAAYEAAA7AAUABAAAAA4EAAA8AAMAAQAAAAEAAAA+AAMAAQAAAAMAAAA/AAoAAgAAAC4EAABAAAcADAAAAD4EAACDAAEAAQAAABgAAACEAAUABAAAAEoEAACHAAEAAQAAAAAAAACJAAMAAQAAACQAAACKAAMAAQAAAAEAAACLAAcABAAAAFgBDACRAAcAek4AAGoEAACVAAIABQAAAOZSAACXAAcAiAIAAO5SAACYAAcAbwMAAHZVAACeAAMACgAAAOZYAACiAAQAAQAAAGJ1EQCnAAQAAQAAAJmxDgCoAAcAMAAAAPpYAACrAAIAEAAAACpZAACwAAcAEAAAADpZAACxAAMAAQAAAAQAAAC3AAcANAAAAEpZAAC5AAcABAAAAAD/AADAAAcACAAAAH5ZAADCAAcAGAAAAIZZAAAAAAAATk9STUFMIABTVU5OWSAgICAgICAAAAAATUFOVUFMAABOT1JNQUwgICAgICAAAAAAICAgICAgICAgICAgICAgICAgIABRAgAAAAEAAGEBAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAAAADgCkAHAADQFY4O0BWODgAAAAAAADMzMDA0OTczAAAAADAxMDEBAQIBMDEwMFNUQU5EQVJEAAAAAAAAAAAAAAAAU1RBTkRBUkQAAAAAAAAAAAAAAAABAAAAAICDgICAgP///wAASAEMAAAASAEMAAAAAgAAADAxMDAAAAAAAAAAAAAAAAAwMTAxBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAADAxMDABAAAAMDIwMAAAAAAwMTAwAAAAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAAAAAEAAAAAAAAAAQAAADAxMDABAEMAMDEwMGQAAAAKAAAALAEAAAoAAAAjAAAACgAAADgAAAAKAAAAMDQwMOPOEMNnfIL5ZToEP28elpUB8Tj7YfjqcSf9rPe90X6N+8pgM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2ffXpB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdF8MxdM553k6gsE6kk67Xv8tniRw+0naq0hdggyoOHpnKw1l2KsU78V+NFphUl6GG6dnVIE8eEOmBVFDB40xo1HEIRL9v8MHEjjhyLrUvEzrs4GiXlFqSLTeSHAbHiQJhfD0kiNAx3wXBel5t4maVcw8uaNmciqxjZt+oSXjAkFt2hpgz1X2RTP+37afGqAa+Dh6oaFnXYaBJHjeK9Rmxjj3OOGRVqdKeGuHh6RfkKPYQqdBfphMf6zxXL8GuT4/b8AYLsMb2aMEZPRUqnDkmL8fzR4ZLSI08kp5vCZqHnRATTUf8ezBKBZh5FW5BYlB7eiUH0Y+dr2rl1tdMw8EPVrWJdz8Qc3RG3rksrVWsWbihZz8TnN/cqCQQEodkCMCc9MFndyy6hY7l8LjnTun//Uehm1SNZXLvvy/uuVE3zqI7fM7LoYXbsHhJTF6PUE1FXpuq7v4sMFnR6BJ/4fEgZLI3dozmTll5owXUFBQaFwqdU26j+u5GHIyijjcOuj4tJPDKRqcndy990z/zfPf82HAGTnyrsgfLo3bZ4w9uw/fzqbYbh9Jc60CaE42tg4KWnsmGOYRQwaYKHJmM+ABVirZuidIAnc6q81c3TPJAJFVpjLXyATo3T6Tx/WU86mN9TSFhlxlzGEnuNpctwyI6NmR+Kbf1zS06N4pJHomSRT/r3GVRQh/eJlzVosY7zzve3wENSfaJyv/iW9zBzkBS1e6OXSb288PEm7mKrKymbbIp/yUMa3+Us6EMHJ0/HSyOmVdc7eO1jYJefdp3jWSHdeCtjMz4Arp7u8NIVofajkqoE5C59GqvQo0hojQeOB0tO218hbzQ+CZim2AOYIdoESrKWGaBKYUdf+cp9LL6Wuy6MUBZIZAt54ldj9U5RpHTKY/MJEXydsS6tHmi66PssMzqyBieVxejRBxzi/YF743kT/v4UrIshTV5XW3QY4J1E6uT2qMVqWIW3W9LHsLBVlcLg7rfdnpGqDkRKYUi9DR6aQeRC90jKimaFwo/gLsSgc2Xe1iVrKGuQCRQUV+xSr2eC+ogWyRTPO1qfnj/FGsEL9eaeFJZaBkXQAEGCL8cJ37zjnng6hSzrho5sbfyXVuE9jN9f1dJjLDYpS/WGcsuGapmuqhI38V/Fux5ZITzqqtmHma7vY3j9oDhdODP8ZGrUkamCZbg5Fwiy3JMrt0QfJrJU4QLt4VN91A8WBBKgI0+/ntQWyQvnakLZ5hzDztNPuFTLlQeeGJXa5FkyndqJubTeJ2tEmbTvUR0teUg4vtVTYh/Eks7tResLqUwsFFzBRrZ14+9LBzBjAgBK5XFyQVwAb8sj5bww5lXlAqFzNvZL7l3iYO3I8WyZTzlq0N2CcBqgYK5KEUCUXtcF0qnkAHn8jd6QU7+PG/S5Ap4DiYBnrpiX2+rEPY46AtRH41C1bTHxDQxhYmwHMOR7AWd2kRtEyEtGJrmYvXV+nPujDLkWERkTu6DWITAr0J61EiGYDDU/DvPqbAOWC5UDb2XHRwWlKeYVXLulHtY9eBgXrnMCtl7fV57uP3WtqriocJ9DAhxxC219QpTkf0S1YDV4aBTTZ7KkLrTPcLjy7jZ1IcMfEZMf7XsD5eTDh0vqQArQ6827+zZHScJBXgz6iMXxG+EE1V1IaadexeSh3UPZ02L/x9iNl3YIMUzFT+gKQpeQ9/L6XsCIaeTPuu+h1kRgrMgbGpUUjqmtK79vc22aW0LEhC8WM18RhrUUFPIxmSdnxHI4QXb9aZovW6zB6aH3+chsReqkzMs0rodO0q7m2pCwz2mO5E4UEhEu3XZZJK5WuSGLohdtfZOZWHtZHS2J8KUNlgJbqMUMAOEDCccyX62tKLKGjlIhIIROpfWBozZglKnEssnfd77zwjOCNxIA1pJQ4CX9adMjeUzaVfAb6JiFw/vvNjIofu3fbLapaL5dguQRzGMFjKRmuwQgbxSYHnqqK6mlU9qZ39Cc8hlnbkxy30NB3XEz21aKNC7SJEWWauBY0xe8iszOv8y8iVkcOmFEcmZPquL7RnBnwkDi9xxb5KChrckTp4mdypDQzPiAZEOU0YvApC8BuL0Rma2NUGDzkp/Yy8ZBgtQBlEOBUwZvveYoGzx1oRMh82cViGMcDxXcGVGfrYOokWp68HQYqhssKF2169koOjreqrnhLfIA2i8c4od+HbvzuU57I+rCEeYC0TjDl+8yTxAmNqSBGSzwf29sYM0USUKVAZDQpUE46lS/SUlmWcKkZhhDMFNgOQRKCYDumElaTtkEHdYKbTcTpLvbIjVN0GOyj9fJIInNrJ4/E7hsYmnPKyqtsdqUx2r3NmmlhXngZoPAZoXxN90x7t6jDjz2ZoVliCEst/nK2tyS4dxODuoLyb/sWFsb9ogiiSgGl5QSSFEAVIVj1/5cDG4Rpz5hmLU4Ah7UCRjn+xt/VUFK1Qy9jFbJW94D40NzuY6U4H6EPmdqg4P1wZk6SsHHrTjzPaT5sHyzjHyWpZsgBpNrEo5sUmIIHp6PsuyB3U120oYUthf30bFF2LvwqBSXKDmvnMm/d5leLcOD0sDT0oBsjfOsNJkrZhwrgfPyBe9MwFtiXcZX4+310JuU6JonQjo4/7x8U7gXr3ydpxVmaGmA42WRAWRtxoawbzk8eLGxztHNlIn+C6Z93GTOVlPLuCQeQK0jwcbjUbN98F2zEWKOe8qyyfaLyxRua11/VULp729KXmgPSW7+Ekw8n1CQGi1ztk7rwfB72HBbeqN/viGX5TNekdyzFKQaSHK6MPBf79qtSC4Ha410Mk8l2UcnB0/FLWrLYiD1WF83f+pnZ42YjZ3zXgncDiwTMhkB/51M8bkU1vTVkG0GqynDG1HVmEsRjq2MR0lS3XkjZzU6CEGnlwKbJtwDRbOdGA1Ll0Uf+k1/tL+BuVyOexGrYoZ/WFDS9I1XenLpZeML232jsDyuc2uS6fErOTuKAVGSC+5DAVHlrIb/4iIUQ/lorSkny1iFXfUeAJu77G7xdcWZWDi3G9WisatU7cNU6SXa55AOCL5NDU4mC3Sbp+bv9aHILGCzxPbh0cM8dMXZvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYF/ZY36z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7tZd6ikUQMc0mSSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVyibLO+sVDrEoEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A694m5248Qc7xnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9reZi9kkBYFdolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6N6P62M64s6en0alSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1D0bw20U0i1GDMkDX0UAebS1eABOXjPLJEcr0j5sYBmUmdkxL3+RaQb5inEdn8OJdPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dpOvce60VFR3Jegd/O0i21MQm+DvvFqqxKhJtN2ge78/ZwWmMUC1C1s5VCe1fxsiE9Ku5q8bE6Z+NQj6n3y2s/NxucZGmf0LQHTOJrzpbAkERcmzo/Ie5YrqG+OJldylVFWk3paM+XeU57msVjojGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WqrUIRHmXrq6XeUQHtFnob9A5i8b7GC4tFPXPgj3Sb+ZVvg9JfJitq5JySwy3Wuds2zKB3oSUlWXEoS7I64yGrIvo77HgZl+95/b6TmEEDiYNZGGPKkXF2IUIPplJWdWvgO/lDKnFQ+pDK6D5IqMWc6u5OIovRMNrzq8szu2KhRLJRvu3imRV9/nw93Qs4gucI8P5NQjj1d7vFjUp9jmUFaMc7bAD4upyRxh6/Pvxd79DOdzQdHKegYeNIIboWKcpWgTo7+yjgJOugKVKGaAdOLiyMrti4d48mCQ80rIHmKg5u/k+wwFXnmpXtQ6nnxH9QKd/Ue4w17+MazMdLPae5Uxy+1TMAF3fsV61BqHOG57WHnvY7d/X++FyOvfL9ZQ+kCn5TFq/U7ukpbjAIo0dLN01f5PLrt0aWek+nhYEkI5VcPoqKZ5TbYjcupU8TB5xMOxwFrSt2UDs8D7iNnORCH2X8enkbV/RXlO8Nai7HmZXA3BBEczfAfMXO1fQwp+Y8179r0OcWmdmmrQuhrobYfo6fFGS69SPxQ420zwxlEyLt96LeRk5+bWAiAUj6MxlR4CiyTpouJg7h1M9EtGscto9JZf+a4jqQ4qfs7F6QovLGV5hOCgsLrP90VbqzdFCS2GhgVRoUS+yPapMjyU3PDv+lOwGySHd9FIiwz/sktSkyO/aq9pzsJ7U3CmQVy8ySFesm2N2CjPcaFb8FR/2iHOgwYTy1o32D+xjQmSXP4LUjypV7zf5d9MwyhqcHX4NjQq2EGrkDNa/tb+vluYBh+uGV+4fxDLK9fnD8d6qh95f7fnOj1dL1Yh0StatXOdpDst1+kvk3/u6DzV+6SqUIqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/SbE8nz0ZZ6ATINjTJA09dMMolRijRP29hGJXU2ZwsvpPQBqiLcB6OwLh0yTpBDZ/wCeWG6hL9riBYVE2a9eYhVjfa/S9FvM2D+DY1+iLf3rNJpcerUL/s45gWVlrbmIgU74PiDfejCEc/8nK8xGppdo1iAGyWQium39KTHWWLStQvQCLPNWFLBn+ys34GqFwxySfVqCC8QNYXl49T81F9lvuFlwhzH5nJu3b0O0AOnvCYZ3VrEfqtJVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEim20RbvI+0oxVZUyal+xHqgh0IKoEMJxK5saRMtEA+HOaz6cX/WiPY16oZlG/F0SpFEOA4X1drfraecnlIdzuwI0Qg0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhugQ/VQggkkU/8uiC04m/iMHH19rAZK0V3mCzeCyv6QxqVK928mSF/E6Ja/WG52AzAKFmQ5LO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5K7javiGKSBSEZrgfr1Rq8eggTZXRxlkQiX7gs/es0mlx658v/zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXUhgSvskPMK5IvoV/XbJ1lVFpnm7bpRYMciS97ftoJxNZL6T8zfsE6lmKojvnHgCRVXWyCuXRDkhKcI+J4NQjD1c7tBgR5xgmUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZpQG25tg3EqQSDaMTCbVKE1mNYnRmJvTVvJFrKL98riztKKNx2mYZZzf0th5MBEdGaHRxzwx12Cj32HZDz1uRD4afpjzSNRIKPNv2CT3TDWlv6y26dtTLm43vHX6VusFC2SbEh8gED602gvWEGiIXjCoSJuVJM93e7ZY4OdT50AWtPfZSpZMC0D7J+P9A/Xz/KMlxMAXi1tHkDT10zyY1SKNE/b2EYldTZoCx+kPdLdItwHo7AuHX1OkENn/Me/Z7pEVW6IscaBZrhF5lSKbahSLH4OYP4NjX7+s/eszGlx6tcv+zg8B5WW6Oo/BNrg+YJ458MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUqUDjua2eQU9qjLT2TawRniAMficG7dvQ7QA6e8mDt7eB59cUqM1x8kIjk1FnCzLRJoN3cgOs3JPiRzM2wWKbWqN+87+O7F1Va8qn/EkqI5QpymA9DOQiKRc+PHHOIZwdplX8uo9rXlhpgbD3RKkUlyDBeTgN6tDZ8gUrfNUggxC1TOu1kmpBW36IufJBqBWaJchzwyjZ/czArB8X6i+8I4JT32CoyX2ufX+t7VBHCH08/2NeHqjLv/xzI/LSLocGszrgu5ZoUVFohrv4S6YXkC/GdDkFV9HSmwowfcItkBmqQfC2g2dSVG2NtPNKlTiTIE1tNAzWwtXgATl4zyyRHK9I+bGAZlNXYpSt/kWkGZYkZFY/AOXD2OuIInPMa5Ifpn/yvIHlVFpoy6b5TCMqmSzLbzoH6yskGj87fskakxKpRvXHmnRFXWySv+RPohucI8J4NQjz1d7hhUR5yKrkFaDOZLKJ4MZQbwoo/0wBvD+IadFgFeLW0eQNPXTDKJUYo0T9vYRyV1Nm0LH6SbAdki3QejsC4dfU6SQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VImdzNg+gyNfuCz96wtlo4V1C/7OOYFlZYI68AEOuH5gnznwxDO/Z2uMCOHXKJZgRolnprstvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBudkj/Q17snyjJcTAMwtbR6N09dMFYlRirRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6Kr/FiO4XJWeYeddWYQ3tU2x25mD+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64Yp9vhiw7wwCsq0FILVfilqjGRScvuuE9onFf1gAtuzT4rArVbbCi+/k3OCRhQ4JS39LXQ1Ymp3nn/RDyV1g0cEe4hzH43Bu3b0O2gOhvEY5pXotfatIVtXFJvg77xSqsSkSbDfpDLPJsTniejds0CCxqjnsC/sWxvhVYahax1iiLUGkpBvTGb7JbWLg1x+aG1fYzV1hqkO3XYQrGQB2A5MncH0V6YKir5icwFMozp8K4QmEzHZb76bQtcqIiycCgkGhS4Q3M7ye7c1owXF+K/tLOLA9UwollwrkcflB1ptzE9DQ9cbifo0g+jo5syU0B/Zqu95uuKOvBhZ5lMl7a2MmAsKYTJAJfdjRLaMH3TjZAZqnFx9mW3UZRqjbgzT+UCUyDNVvQYlvLV4AE/eMkslxyouNmRoGZTV2KEvf5FpBqWKcRxzykV89jlCDJzzCuSH6RP8ryKlXOqR4uxCWIjH/kuy3jaLBTzO83/HI7u2rTijrbcV6pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXy1tHkHT1kwziVCKNU/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYJ4N236ts7Os7mlE6vsv0TjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8BxyqjekZEXDAxL70gKDfCabue193nJX2TawRniHMfjcG7dvQ6vAUy+qzuhesR/q0go17skhjkf61pO2e0DNagi58/MPiBzN2wGKbCq5BCoBybF1VZIq9o6eqE6Qtynw9BPQn1vcOPHHOIZwdpkX8uo9rXlhpgbD3RRj2tbPxeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa6dzrKTY3CATEmVb2yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bboi58kGoFZolyHIzCunf3OEMPnfIL54ToEP+sIlpUF5jj7L9TqcWnSrPez4H6NDf5gM3csUunxalSve7hmhRUWiGu/hLpheQL8Z0OQTn0dLrCjB9wi2QGapB8LaDZ1JUbY2080ilGJMkzX00AebS1eABOXjPLJEcr0j5sYBmU1dihL3+RaQZlinEdj8O5dPY5Qgyc8wrkh+kT/K8jWVUWmeLtvlCoxqZLst/Ogvk1NvqDzt+ySqTEqlG+7eKZFVdbIK/9E+iG5wjwng1COPV3u8GNHnGKZQVrk30sodjVlBhibj/TKEcnyjJcTAF4tbR5A09dMMolRijRP29hGJXU2aAsfpJoB2SLcB6OwLh19TpBDZ/wCeWG6hL9riBYVhWa4e69UavHpUix3M2D+DY1+4LP3rNJpcerUL/s45gWVlgjrPwQ64fmCfOfDEM79na4wI4dcolmBGiSfi+i29aXGWFvPtArRCbLMV1PAnu2t3oCTFwxySZFKdA8bmIbltfaoy19k2sEZ4hzH43Bu3b0O0AOnvEI5oXrEf6tIVtXFJvg77xSqsSkSbDdzID7NzT4gczdsEimxqhTvO/gmxdVWSKt/xHqhOUK8pwPQDr3dbnDjxxziGcHaZF/LqPa15YaYGw90SpFJcgwXk4Dere2ewFNXzLIJ0Qq0z1tYxqX1tuiLnyQagVmiXIcjMK6d/c4Qw+d8gvnhOgQ/6wiWlQXmOPsv1OpxadKs97Pgfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDJzzCuSH6RP8ryNZVRaZ4u2+UKjGpkuy386C+TU2+oPO37JKpMSqUb7t4pkVV1sgr/0T6IbnCPCeDUI49Xe7wY0ecYplBWuTfSyh2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiVGKNE/b2EYldTZoCx+kmgHZItwHo7AuHX1OkENn/AJ5YbqEv2uIFhWFZrh7r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawRniHMfjcG7dvQ7QA6e8QjmhesR/q0hW1cUm+DvvFKqxKRJsN3MgPs3NPiBzN2wSKbGqFO87+CbF1VZIq3/EeqE5QrynA9AOvd1ucOPHHOIZwdpkX8uo9rXlhpgbD3RKkUlyDBeTgN6t7Z7AU1fMsgnRCrTPW1jGpfW26IufJBqBWaJchyMwrp39zhDD53yC+eE6BD/rCJaVBeY4+y/U6nFp0qz3s+B+jQ3+YDN3LFLp8WpUr3u4ZoUVFohrv4S6YXkC/GdDkE59HS6wowfcItkBmqQfC2g2dSVG2NtPNIpRiTJM19NAHm0tXgATl4zyyRHK9I+bGAZlNXYoS9/kWkGZYpxHY/DuXT2OUIMnPMK5IfpE/yvI1lVFpni7b5QqMamS7LfzoL5NTb6g87fskqkxKpRvu3imRVXWyCv/RPohucI8J4NQjj1d7vBjR5ximUFa5N9LKHY1ZQYYm4/0yhHJ8oyXEwBeLW0eQNPXTDKJUYo0T9vYRiV1NmgLH6SaAdki3AejsC4dfU6QQ2f8AnlhuoS/a4gWFYVmuHuvVGrx6VIsdzNg/g2NfuCz96zSaXHq1C/7OOYFlZYI6z8EOuH5gnznwxDO/Z2uMCOHXKJZgRokn4votvWlxlhbz7QK0QmyzFdTwJ7trd6AkxcMckmRSnQPG5iG5bX2qMtfZNrBGeIcx+Nwbt29DtADp7xCOaF6xH+rSFbVxSb4O+8UqrEpEmw3cyA+zc0+IHM3bBIpsaoU7zv4JsXVVkirf8R6oTlCvKcD0A693W5w48cc4hnB2mRfy6j2teWGmBsPdEqRSXIMF5OA3q3tnsBTV8yyCdEKtM9bWMal9bZJrZ8kGoFZolyHIzCunf3OEMPnfC2O8DoEP+sIlpUF5jj7L9TqcWnSrfez4KiiDf7jE3csUunxalSve7hmhRUWQ1u6hCbvfwL8Z0OQTn0dLrCjB9wg2QGatQMLaDZ1JUbY2080ilGJMkzX00D5TS1eABOXjPLJEcr0j5sYBmU1dilL3+QAAE9GRiAAAAAAMDQwNf3oEcPlfMj7vztOPbYJ3Jdb5zj5r1Rq8elSLHczYP4NjX7gs/es0mlx6tQv+zjmBZWWCOu/hjrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0ilEJssxXU8Ce7a3egJMXDHJJkUp0DxuYhuW19qjLX2TawTtj/04o8OpdJrCBgTPDi0ZGuxQAVDfLVyGYebtulSsyqJPttvOhv0xMv6Hytu2TqDArlW66eaZEVNfJK/5F+yG4wz0mglC2wgzs8GFHngOYiVrn30soczUOBhybi/TOEc3yiJcTAaEibR+/3NxOWYPHigyw3MFXIHU2Ygs3pJIF3SDRB0xPux/IsSa8Jf7+hqNFgL1miPnqEGQNhBmrKPMVre6Ic2C+DUV6g7oirauWEOu1LjXH5g+QlQjrAwSO4fmCVOfHElj9na4YI4NeNFmhGOpgWeiE9RA52FvPtFLTCLLMV1PAnu2t3oCT6AxySZFKdA8bmKrkafbMy15k28FL4WbEe3Nu3bwO/AJXvFI1aXrofqdYVtXFJvg77xaqsC0WbTSLIC3l9nN/ArT5tJ90eMoFzvsmxdVXQqx/xR6hO0e4oQvJDbnZZHTgxhziGcHaZF/LqHa15YaYGw90ypFJcgwXk4Bere2ewFNXzLL20fW0MFpYxqX1tuiLnCQbgFmifoU9K7C/1P2Qw7B8ZgZFOgQ/6wiWlQXmO/su1OpwaNOt9rLhfo0N/mAzdyxS6fFqVK97uGaFFRaIa7+EumF5AvxnQ5BOfR0usKMH3CLZAZqkHwtoNnUlRtjbTzSKUYkyTNfTQB5tLV4AE5eM8skRyvSPmxgGZTV2KEvf5FpBmWKcR2Pw7l09jlCDMDQwM5WoeLzieeRY4Z8EXsjOtFwnVjn6LtXqcGjQUghO4YGLCf40QWwycMDC6lQue+9mmZUxiM+/5xqopesRl7Jjuonp2kRQ9C/RKvJuUOr9n8GN3bEvLbvGZb1h1pMNBpAerT/6sYi+M7KJHMvhkbSyxNrB1EXDFI0xAYbqm3MlfVmdHTwRIlTatPksxbJXIEFJ6rNaehKZM+txu+yLd7bC5I1OJRGaehBE6TV8J+GUKhX6oJR+1DSuLR5DV6b10VB8/UMHQ7DWksTZS5I9Q/QfRPV19cszdKIWUenzs/sVcP3tbPjJok9c6slVI9wf5714ZWT+rK8uGhdBwJpqsMh+Xl1sLNO0wV5eOUqh8WuuTSPVrJdXghevBDHK96GidRlHzbEDouvkap8pUc+GHHlRdkWNH+SjgKbR1QF2mBcnrRFE8BNsPGy7fY5NopQN4I6D4FM1s7csZt1rlAKhGbgpfzp/HjAxamo/aGW7luf6JUlaz1Yq4LSOPhbNKrNvcxU77H0a7cvbr6Iy4XFrBYVFTsx60tOP/20svmkwjq1x7mkjDSEvGP6jIxDxpmZDtjQC7RVbkFsRGtqKeVJGL/2g8xodbWlScAtDaoHWsLFbQc9JWnUhSWwkSEh2i2VepupSVy23jdtti0uykQP4OTWO6Ls1uRVTKGzV+xmLqFrcQc1pPc7qyAqM7OShOQUeSet/kUX2Sm++wMmUKcvNW3UO511N7HBVhBBcgLFHPlrcFx1e1T8mAj46YSi5JsrRdMLaAN0eI6q/rJWEQYGah1P6PyBlUYthKZFiyr3FnLE43Du6d1S2DJ5nNarJRdE/0hRhdT6D4D02bXWQpms3Sm0bKi7lC3wzGzelsysOhILDteKacq3Zt21/l7J+6tUH3KzWRUWqoPO/7JOpAAraJvAz6Rd1gJoLznTXEomvUQflf70TaMPFTXG8Mt1sAKuQBih2NWUGGJuP9MoRyfKMlxMAXi1tHkDT10wyiRGKNE3b2EaEdSpoL+akm+7f8yL4XLAuH1VEvEJm/AJ5sER7QGuIFp+F5rh4r0WVDhatLHczYJYPjX4fTPes0mlx6tQv+zjmBZWWCOs/BDrh+YJ858MQzv2drjAjh1yiWYEaJJ+L6Lb1pcZYW8+0CtEJssxXU8Ce7a3egJMXDHJJkUp0AAAAAAAAAAAAAAAAAAAAAAAAAAAAMDIwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICAgICAgICAgICAgICAgADAxMDAAAAAAAAAAAAAAAAAwMjAxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAEMAJABDAAwMjAwAAAAAAAAAAAAAAAAAAAAAAAAAAACAAEAAgAEAAAAUjk4AAIABwAEAAAAMDEwMAAAAAAAAAEAAAABAAQAAAACAwAAAAAAAAAABwADAQMAAQAAAAYAAAAaAQUAAQAAALhdAAAbAQUAAQAAAMBdAAAoAQMAAQAAAAIAAAABAgQAAQAAAPRdAAACAgQAAQAAAOcgAAATAgMAAQAAAAEAAAAAAAAAAAAsAQAAAQAAACwBAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/2P/bAIQAAgEBAgEBAgIBAgICAgIDBAMDAgIDBQQEAwQGBgcHBgYGBgcICgkHBwoIBgYJDAkKCgsLCwsHCAwNDAsNCgsLCwECAgIDAgMFAwMFCwcGBwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsL/8AAEQgAeACgAwEhAAIRAQMRAf/EAaIAAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6AQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsRAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A/FQfsKfG9vu/Bv4qn6eE9S/+M04fsHfHE9Pgz8Vz9PCWp/8AxmvS/sbH/wDQPP8A8Al/kZe3p/zL7xR+wV8cz0+C/wAWP/CR1P8A+M04fsC/HZuB8Ffi0fp4Q1P/AOM0v7Hx/wD0Dz/8Bl/kHt6f8y+8cP8Agn/8eT0+Cfxc/wDCP1T/AOM07/h338ej0+CPxe/8I7VP/jNH9kY//oHn/wCAy/yH7WH8y+8P+HfXx76f8KQ+L3/hHap/8Zpf+HfHx8PT4IfF/wD8I3VP/jFL+ycd/wBA8/8AwGX+Qe2p/wAy+8T/AId8/Hsf80Q+L3/hHap/8Zpf+He/x8/6If8AF/8A8I3Vf/jFH9k47/oHn/4DL/IPaw/mX3if8O+vj2OvwQ+L3/hHap/8ZoP/AAT7+PY6/BH4vf8AhHap/wDGaP7Kxq/5cT/8Bl/kP2sH9pfeIf8Agn98eR1+CXxd/wDCP1T/AOM03/hgP47jr8FPi3/4R+qf/GaFlOOe1Cf/AIDL/IXtYfzL7xD+wP8AHVevwW+LQ+vhDU//AIzTf+GC/jmOvwY+LH/hI6n/APGaf9j4/wD6B5/+Ay/yB1qa+0vvGt+wh8cF+98GvisPr4S1P/4zTT+wv8bl6/B34qD6+E9S/wDjNP8AsbMP+gaf/gEv8iXiKS+2vvQ0/sOfGsdfg/8AFIY/6lTUv/jNNP7EPxpXr8IfigPr4V1H/wCM0/7FzD/oGn/4BL/IPrNH+dfej+miDTgvbrVyCwxjAr93ufOWLsGm9OKuwadjqDU3Gi1FYleeavW9tuUcHI71E2aRdi4ltlex+tCw4P3R+VYGjetxDaZfgAVKtrlMHBNKQlLcrXNoFfMjAfSqtzHkEKMCmo8w5T5SnNAzetVpLP68VskoIxU3N6kL6b5nt9RVa701UXHeuX2s+ayOv2ULamddafx3rPuNLLdq9CjU59bnnV4ez0sULnSiueKoTaWWzgEVvdnLdI9Dg0/1FXrfT8dq8/nPTcS7BY47VahsulHOSo2LMVlntVmKwK9BUuZRZi03d1ODUq6XjqKydSw7XD+zcNyD+FNexAXIGTU+0FYpz2m4nIqtJZdiPzrohbcylLoQPZHPSopLH2rS9zOMuXYgksSO1VZLDPWplBSNY1XErzWBK9Kp3FiFBwMZq6UVDYmpUdTczbqBVfBB+uKrNZqScCt1O+hyyg0jtre2FXIbbGABXke0PVcS1Da9sfpVyC0z2ocxcvQsx2uMACpktyCKTqESRPFB65qZIPrWcpjim9h5tgF5BqvJF6UQncU1yleS23HgVE9nnqPyrqjM5pakL2fWoZLTHUVamQ0Vp4NvY/hVeS1DVSmVbQrzWfaqlzp+4HrVKYGZdaSSTtqo+mFT0p84mmzpba4U96uwSivG5z2OQuQTDjNXYrhfWjnJcCzHMvrUyTJ61POyXTJElXrn86kWcL0Io5ieSwrXII5NRNKpNOMrETgxhkWmtIvqK2UzF0yGSRaryyLirVQn2ZXkKt1xUMm3tir9oP2epWnYDoRVWVwvcU1UK9mVJ5x0yKoyupckn8qpTJcCnb6gR1atC21BhxuP515dz17F2HUmA+8atQ6oy/xUuYXKWY9XYY5FSrrDexouS0PXXGUdqX+3G9KeguUT+3m9KT/hIMdjTRLjcQ6/j1pra+Md6tMnkIm14d81FJryDrmqTsLkRBJryA8k1BJ4gT1NPmF7MrT+IE55NU5dfUsQCaakHIVbnWlweT+NZ8+vKpOCfwq+YlxsZsevCBcysFH+1VvTvFME6grIOeMnIzXme0PRcTRi15MDEi/99VZi1neoKkEdiGpe0RPKyZdXYDOTgUsWvZztk3ewNHOhNEh17A4JoPiHHc1SmTyjW8RgHqaYfEfqapTE1Yb/AMJKB3pG8Rg96pTFYY3iJSOtQyeIV7tj6U1MVirJ4gTn5jUD6+h7mq5wsV59dXbweKrSa4Afv01MXKVLrXQ38fFU31dTnLVakTKJ8reEP+ChXhPxE8dvqcz6c8kwiHnBDEoJPzlx26E47MPRse1WPxZW600X1hLF9kk+eKSOYMuGBIIHQ7gFwQBnIx1Ar5LA5vSzBNw0a3TPUlT5SzrPx4svCmmvf65cpbWlohuJ7ieYqscY5O5fX04JPpk4rndN/b9+H2varb2Om+JdPaeViCssjxKCHXarMVQKTuA+9yTjrWuJzKjhJRjVlZv5kKKO/l+MEeoXC/2aIiq4G2O4YhhkgEtu4yQwzj+H2pv/AAtFy8sltJKEthhhIwfHJGTgY/u9epzXRGupK6YSgizb/FQzO0auzSoAAuVG7OcHGOvzLgAn+dPT4miRJMvJGVQMu9oyGIzkbh39MDkDtyar29ieREX/AAtiISKk7IryDgD5sHPt7euP60r/ABVQXAjaCOIsm4PNKArYGSRnHYevcfjXt3pqQ4Iib4sIi7nEIHTuOfX73TrU6fEN5UkYrAVjAYlCSUBwAThumSBnjqPWq9u0HsxbLxudRlEUCJmT5VIdgcnp/F+tPk1weTHI73CRybNsmNyEnd/EWUY+Xr04bng4X1hpjVNFA+PrdgVSXc23cNoBxzj+/wD496bb+MYmkjEsk/zYX/Vevfgknv0HaqeIkhezQT+Ko4VDTs6RvnZLMGAYA4yML03Aj6giok8T2027zbhUAwQ2H/eKR1GVHHTrjrn1xUa7e36C9mQzeJbHnbcF+ONoPNU/+Egt7jcYnlXbtBLDABPqe3TvxW0cRy7kOmfkD/bpvklnsbS2ni80hJmkUI5w394ja24gc4JwQCxznd8I/tNa7YaHZRT6rNp9vZzfaYLa/JKBIcKdiMWxwXPQZIbk/wAP4vT56Kk6cmna2ml76tHpXs9jsvEn7UfiH4l+H50k1Rbe0WN7cTTCTybgSx4kZ9o2svDdckcjaM14wbW4s72Sd7sWm3E7XaozAooO0buoJKkDtuHoBXdSxlTEzf1mpeX3Jf8AB72+4zlFPY9H+AP7UuvfCLXYZ7GaBF1CN4bmHV5J5IQ0bsyAxrySAcZAB55blgP0Y8F+MNC+IGjWst7fNZRsjRLdTRNE28ojbgh+Z9pk2YAO4xuEJUA172VVpUv3Le+2nl+QQimakEWiaPdCTxNq6rFcHzHEVmwRFDYkLLvXIBAxtPO7nHQXPD/ij4Y6n4su7PxT4ivrew3Mlp9j2wvl2BDSvLGUVFUkYBZs46fNXtOtNPRXNVRVrtnF+EtcbXGht7tpbWS5neJnjhJSGPykdW3lh82SeM/iAa7278BPCmkOJdVV71Eiewnt5FeN2YKcsQwiypBw5+UrjcQMVvVqKMuW/YhUr+hT1KePRtjlZUmu1EUulT2zTF55NwVIVxktynKtksT221s6Z4E1PXL1LXw1IbDUPIknudPuo2hNgpjyd6yxKn7xQqxEsCSUzhiMZe108v8AL5+Y/Z9DjtQ8b2zWrWUUwW2sB5xMUqyJe/fUiHDKGwRjjcwIOWyMVnx+I9V1HXnkjCN56tLBa3N1EJAFwoJYlSXBK8gZYg4BAIrSM3s0Q0jPtvEt9ol/GoeSeZtsY3Sr5Q3AbVYEgKpY4ycDbk/3sat1rl5baT9rlA1KeNBNcfZZROkO9WK42DG3y1Z2O4jCtyCMCp1E7AotGdd+KGi0eaHX3t7YmHImuBKSjeZkbAASDgNxwSCSf7tZ9x4/8iyS5spGDNIRvhfahYjLFRhdqkbQMnA2nIPFVSrX22FKHca3jMXG57F1nSL5JbRJCyA+gYdeeevTv1Aq2XxD/tC6YQy+XKsrKGRQPurwMHGSRn0/hGOcjT22/kQ46n54yeCvD114a1bWU1m7adnnVF0q0htbSdRAu2CONkBWTCS75ATlnjzk7nrhvH/wZ1izjuZtOs723ms5SLuyuLsXU1tGUHzG4VViJyJAyhty7SSoAJH47RzP2dSUa9o2svN7a320vrp1tudUqXPG8NTM0Pxd/Z+j2Vm98zw+YX+xkL8yMF3gsPfdhTz1z2z0WnavjR5v7Ru57uC5EXz6fFujRUViwcFR0RQeMYDEncOD6dWNrvlWv3GEbvQdeeM7S40xjpNjZWSuiLHEEQG3dQwY7sZLH5SfcDI5r7E/Yu/bPv7LQrvSvjr481ddF023MFpDbRyzRT27B43XMb7otqsrL+7YfIckYWuvC11hJXqttd/6/rTqaQnyyXY9W8c/tAfDj4f+CYLe11CDxOdRtg8lvaapNFIzrtNqLiKOUBmCyMArBShUrkMGx4l4s/ad8H6ndAaFok+mqszt9oQTShos4wxeUrtBdRuCjkD1r0Z8Q06NS8HKS6pcqS8rtXfp0XU3nVpKPJyL11v+dvw+R3Hhn9r99T8J2YstWgtoLANBLci1topACzBiWRVMoII++zneMg5Jxo+IP26tHtNMvIodQu7mfTokFrfxWxjnZgHAzGzYUhXI3HHTIyQCdauc0JQjUg7PV26pro1+H62FTlFJ8/8AXn0/roM0/wDbz0q/16ObxVb3rG7b7MLiy8xX8skAsWaQhF+ZnJww6ZABJHpWm/GqD4h6eZPCFveXetTFJrH7PjU7gbXYtMGWLzBzsYIpCo0cxG3zNp6cLmcMTKUKctdN1+vq+qX5gpwe8bpGnZ/Eg33hC8ufGF9fXd5cC7nj0fxEyQQMqQqXmS380yNhG4kYKMIypllIGf4d+LN74ptLnQPCGh6pq0JKteXNnYq4t7MPsMxgiAeNWTy8/vQcZVpHDlq63Wbl2Wn4fn66CUeVK/8Awf6+82/GXxo8KTeMZtL0Cz8JPFYGaGC70mxnnguZkWN4ZZLkskkUG9HDRwhiMPkz7gzcTr/xmOjeJ1sY9M0640drxZpXS1ufLnglEZbarzSFF+YxgqwBLkMcdFTn7WShL8+//D/8ME2o3aNHRfGdtLo51+ax006fdRG2DW9hFcwRHfiUNE7q4k2vkYAyikfNuZhmaZ+1VpGv2V54S1Gx0rTNItYvtH2u3jMMbXQUhpdkaKWyCo+fcrLGMpkrscKnNH3X11Xf8uu3TuVdR3Rz/iXxHZ6Dd3ljok02rXLxykz6hbxWcRiWRmikWNJH+8hRvlYHdJwflBaTw94jS2mtbyC8s7hoUN2yNcSusTeW7Kd6/MUd22MQQeVbkZA638PNfXf+tP8AhzBbtdD4b+F99e+EfFH2jQ7Se3hS3uria3vpXeONQSYyGijXeBt5jCkM0bAlclU6yLxTaXEmt3l15dzLfw211Bp8ayoIi22DmbAKiJJWU7cZaQEktCK/GsRGVVrlknJqztpu2+bVva3ff7jSm+VNW0/rQ5j4reEfEPj/AEMWHgqxs5rXSWv5lVbGG1e2s4SuYUDPJJmJEiZ0DHZudjkB5W4XQvBniC91XTbPxLY3FvZ6pbx3cUdri4EkCTCJmChz84Kn5WOduAAAVr0cur0adNwlLVNvuu9728m/x3ZE05O53Uvwr0DTLaZNUmngNnIGZZflLNgHy3C5J+VTyBk54Vc86/hPwBNp/iqxit5poNOlaMo+rhx5cKZbY5VUDgqMqVKDcSN33SU8fOpHmmk1/W3y/Bluim9D0O7/AGffDvjW9lv/AAN4ik02dTiOG6mMgV+WXc4bPX5htAI3NnJII4nxJ8B/FPh5TG+japqcL/vX1S2UXbMqIWyVhkdkbKwqGIHTgfe3cOGzHmSpztFq3S1+ttmvyE6F9Y6+R59onjeHQtBFvZpeRyq4V4pUjJSTOXIYjK5JVcEYG0Hk10fh3U0vNLe51x/PWUNmIfMkTdfvZz2bocfMR1xXvVKLjG63bMoampbWuo6/DeNoiXkn2cvEbKzQSyRvgkMY8A7MsQMe/cc+k/Aj4m+KvgH4sudK8TRXMnhnV4XklsblyLSWS2xLFlBn96drLgnDbgGyqmjD1FhKiqPRR1v30v8AlpvudCpzl71tD0TXf2m4b2KO8+yXcmn2txjyppZZHMCMj4Y52yKxjZWBVkQZwGPNdf4/+L3w7sfhnJa/DmDWW8SrcQSD7bbWyxPDIhadzcAbzIkqPEMBf3ZJ3ZFehh85hVqRow0Tv5b+X4qz0em5te95Mz9E+LnhHwx4Ekh8HMbTUNUjhk1y0mtIylw8Tt5cdvIxeQYdVZm80BiwYqduBl+Lv2prnwz8Nr7S/CmmWLa3diW3uNavLFkvLaE/Z2aOGRLhxgmN1IdDsA3rsd22+rXqyVXncm3bT8v+D/wxg5RVuVHnOh/HfX7L4f3nhyNo1sri58+6aNHV94R1KAbgg4kIO5C64O11BZTh6H4mFpJJNZaeIz5QR8zs+Q3B2sSV2nOTyGx0PUHklXlRnz3sv6/rQ6Kcea2l2afhX4itquJrq4nEtsyWsNhe3Fx+9jZduzO4FUCKARvHVR0yR1cHx+tLb4jRnUbGDUtLltBElvqd1eXckMKoA0cbCWJyAAQE5GBzu4pLGuyTk2/LQappbKx8lfED4j22l6ldWXh2x/sW31KCzc6XOYWRreaJJEZzGh3EAxlXL7tpbjMj7dHwV4/tNDtbOEW1tBJZWtxaF9RYPCDI0h3hNpDkCZOSCyjJwR935SpgansdGuZXvpvo1fV3utN+hwe0jfRWRpeC9dl8I+LLfxHqOr/2L9tzdmWc3QnvVR8uI2RRuVyrLvZ1BkicEjaRXU+EfjZceNrtdLmLvqsoghtbt444bq9fZmNWlZ8hclAFDDdhSQ24bOCthFKN1H4VvvdX20u/N+a0TNKVT3vee5zt5qN3e2813BbtFfW8++UyHKvKDkbEGAhbqcZU4XsWrPsf7W8O3cKv9qIeRikduoVhPuxuwevRduOmMAqea9OEqdOHI36fh95Urp3Ppf8AZ7Xwdd/Cq4hMy2Xie1uFu5be6WVmkUxAEGTO11KoXXgbSrK3VS283i+003VbOKe4KrLKot2i+cTndgBCp452r1ABYdSa+UzDmlirQ1v+m34fkegoR9jGpD5+o/xvp9n8QNFisPEui6RrtkpkE0GpTn7RAQARslj/ANVJk575B6c1xXin4U+DbyCOLwmr6ffklpI47jz47ZYmXzAG+UluQAxBI3K23ArqwGJrUuWFJ31u109V/wAMRUgqjvLfuZdpr6fD26/s3TYVuV3upknnR90gwSgGOBgseeevGCpOtpXim1vdH1D+2o5WjBMb7nXNuSO2RkP0OQOcckc4+rw6VSLTX9WNoVeT3OiPOPE89t4TN7D4eupJdMuImW2hRd3lomHY7/u4ydgzkng9waz9P+IU8fhuEoLg3F7zLDOPmZHbgY4XaFQMDgqNo4HSuWOHcZtJ2139e33Hm1GoSstjS0z4mo901nPaQx+fI0MTxQjGCv3ztXJwTG2OByTg810E1zBbW8Rubx5LFiVkW3j2guRknttzhzk8Y5yVxXdDEyoxtWfM3qtf666GXLz7aFXWdX02C6WUwy2tvFv8xTJnygoRicdXBVwQWwceuRXLvPpd59oknfc87KqQsHRgPm54HOXUDnnr0GcdlKvOqlCS1N/aQ5rdP6/UzYtFvdKnkub23ma1K7FG84THUAjqeVOOQA3Oc034hywQptt3fcHc5Ez8rgAISc7dp68DOeM10cnM1yu/9fqJzsnc878RfCG48E6jpcuq6ZdpPK2+cJ5hFqXjBhWaRo/LHzZ3DBztf5j1Wh4tyNek/wCEbsI9OjtE2W0dvGBuh2bTIXXmRnyTnkYYfMQVJ8hYiMmrvTX+vzdn69DklBxurEV34ri1fQ7qLX7d9V1WSUTvqdxPL56R7AuxTkBucEZX5QCPmB4saXdnXfElzdeGXjtbplZjCR5D8Y4iSFQqn5sBeAeR9K+rezWnw9v63+dyPiaPRItQ1WaOG01MWtwBAnzSyAPGWbLK4yDu+fccF2BVfmJGAaTqS6RravfXUMGxnieNYSzBoyzFzxhX+RWJBDAMp/2a8qdOEZWivT+vy7eR2RTauzovDvie3eNDpc1ja3DbVEkUDu4ZWDKoTJXYSN2F4YqGwM5rYl12XRYjprGO91Ga8EjRXAaQW8keS+1Gc7TnliDzvyAc1x1sNzVk5a7ddVaz+XTX13NYNxTaN+2zpl1PfaW0dxNIJZhFZIDLbCQsIS23cdwQkEA5Y8HOw45LQPHd1BfcRzW8U7OZZZo3h4G9GD7iVbI4Gcgnd3BNaUadPl5lo0vnp2/QmpOUHoWJfGNrrFxp1pco5udPuQyPGjfu8leGjVhuXg/eUnlhn02J7S10TwvJZTxy3M97HI/nOyoqSHjyx5fzeX8pBDNtHJAFdUsRUwdG32pbdbf181+Q4zUr+Rymr2Fs0NzbpZI0jwlolffI7PgfxngxknAbPGeetcVqMS3cjR3haK7mZwiKSCCMYbgHjg5H91ML1rfBupKTm5a7/wBLsv8AgHNJ3E13UBpM0qaYIWMflRY3LKygr8oR+p6HOOct1+7Wvo14fDNtHB4xSSeS8eQQrLMybI1VoxIWzt3Lvbbg5zxycY7K8nOgv5n/AMPcS91l/wATano91ZMkVqsVq8UZTyn8tkWTnzGVyp3bgGLHce3A4qj/AMLLtvDdxc29koQOpTMRJjBRW+QhgOnAxg8scZOc8XJiK8HCT36eluv5WHzR5rpE1l8TZV0pr3xHHLNMNjxpdRhVYY48sMCNi4B6emfabUXsmg366whubplPleY4BV8Ep22gbAMsT06Ywa1XtMJO9J31tb7rg5KW55VonxAv/wDhYtzqHjZ9X1W2ulaOe3XUG8y4KQssTM+GV/LZYnAwUwgG0AgV2/hT48WdrPFHceHNOvrlFSztria2a6dLc+YGULvUFiJCuF2gjA6KBU47K/rUUoT5Ul006Wf4Oy7fedVKrCitYXd3rv8A1r+foR2njXwl4nv7lPE3hPbLPJJINT09p/tIc4LFg7t0GSTlsdccmpNS+EOlDURP4Qv7S5giLnZeQEXS7V3ASB1C4I5yRz6V58HiMvcabnzwt3V4/ldf1oZNRrP3VYzbXxJfaLrC3KXCSFWaGWaRlcCJiqiRXy+0YkUswxycdas/2voGradK+qlLtiCfMhi8mVMlvkUEFY0APZf4uD0UehOlKfLKK1/r+n8x8yWkjofAltYWeixm3voXicbbc3sCQHqqmQFFbDBlIG5gSSMgfKazPE3iaysIJVe4vvts9zL5iW6GIRMuACAjBWwSQF4I/Krp0qlebXLZ/h5g5KEbJkXgr4xPZajcwzWsCRXEvm+VcdBISfmDYOMlhnHB47Y29bqVlPqV1ayQWUarOsa/ZoVWGEzoCedzYbqfm2kHuM7SHXwaozTlLRmHPzKxgxeFbfw3qltLfahHb3F3ly1qrSM4Yjjfk4YcEYGTn0ORl694uvy0a2Tb4IZZBExYM9xGQOA2wZOGGcd23bRg10zpLFWbjp/X9WE3yp9zB1b4jam6yw3JkWZ+JJJNyuG3Ekk5yTzjLe/rUNr4lg0uayl16F5FOX8xJFkPXHCc9DjqD1zg9K6qWHjRVob/ANbGcXqS+D9cvy7akkd4sfkmS2uLeMiMKrAycnG4AKQeoJABr0SBNIi8EReINW1iN9U1CRpV8OxpOri1RvKjkhYqFOXE5ZQ+ECKQWJZUynRWJlNQkk0upXK2cpY63o9l4kt11K9vFv0fi6SNLfygcFl2gZYEOTlto4I+t608Jadpzvdz3EOqShd5F3ujjGWKnG5cM5Kuqg/QjIrH2kqUEuXfa2tl+r7dg0JV8S2dutnZ+I7axZXDOUt5kKBUyVDrgBujAhcZyNvAAKac0GualLcfaZYIzuZLGV5WWMKfvIzEEkEjjHGepBFQqcopyWq6XXyvr/Xcan3PjP8A4SnVMKP7Sv8AC5wPtD8Z6459hUg8Z6wFAGrangEsB9qk4Pr1r02kxXYDxrrItDANX1MQFg5h+1SbNw4BxnGeTz707/hOtcGB/bOq8Zx/pcvGc57+5/Ok4RluhDD4y1g9dV1Lru/4+ZOvPPXryfzNPbxzrbyiR9Y1UyL0c3cmR+OaFCK2Q27jl+IGvLD5a63q4jH/ACzF5Lt7dt3+yv5D0pB481xWJGs6sCQASLuXJAxgde2B+QqkrbCGf8JprGQf7W1P5eB/pUnA/OrC/ErxGsYRdf1sKMfKL6bHH/AqTSe4A/xJ8RSQLFJr+ttEn3Y2vpiq/Qbqjb4ga80bo2t6uUf7yG8lw31G7mnZICNvGussQW1fUyV6ZupOP1psni7VpUVZdT1FlU5Aa5kIB9uaALcPxM8SW9s0Nv4g1xIWG0xJfTBSuMYI3Yxjikn+JXiO6nt5LrX9bkktF2QSSX0xaFclsIS3yjLMcDuxPeoVOEW2oq7HdkDeONaebzH1jVDJwPMN3Ju4xjnPsPyqQ/EPXyEB1zWMR8KPtsvy8Y4+bjin7ONrWEMl8d65PIXm1nVXY5G5ruUnk5Pf15+tH/Cda4G3DWdV3dM/a5c/z9qq1gP/2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/hB/5odHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+PHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyI+PHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj48cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4YXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iPjx4YXA6UmF0aW5nPjA8L3hhcDpSYXRpbmc+IDwvcmRmOkRlc2NyaXB0aW9uPjwvcmRmOlJERj48L3g6eG1wbWV0YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8P3hwYWNrZXQgZW5kPSd3Jz8+/9sAQwACAgICAgECAgICAwICAwMGBAMDAwMHBQUEBggHCQgIBwgICQoNCwkKDAoICAsPCwwNDg4PDgkLEBEQDhENDg4O/9sAQwECAwMDAwMHBAQHDgkICQ4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O/8AAEQgB4ALQAwEhAAIRAQMRAf/EAB0AAAEFAQEBAQAAAAAAAAAAAAIBAwQFBgAHCAn/xABFEAABAwMCBAQEBAQFAgUEAgMBAgMEAAUREiEGEzFBByJRYRQycYEVI5GhCEKxwRZS0eHwJDMXJWJy8Qk0Q4IYslNzkv/EABwBAAMBAQEBAQEAAAAAAAAAAAABAgMEBQYHCP/EADYRAAICAgICAQMDAgUDBAMBAAABAhEDIRIxBEFREyJhBTJxFIEGI0KR8BWhwbHR4fEzUmKC/9oADAMBAAIRAxEAPwD6oSnbpTgTjc1/Rp8wOhFEE7H0pAEEnrtTgT6UAtB6cHNGE0BYYTvRJGKCv4CCd/ei070hbDCc4pwJ60FBhNEE+tFgOAbDenU4x1yakY4kjpRZGNqKZQYP/MU4Fb71LRaY4CCOm1Hjb0qB2cM5604EnFIAwn9KeDWU1mx0DycH2pQ1t02osloTlV3L39qfYujtIzShI7Uw6YoT7Y9qXQftWfssQpPpQKT/AMxVkMb0nNEEe1W2R0OhvbpRhAxWTZqhzSMbAUCk467VJbEAGelIpGr61XRAyW8daaO1Vdk18iAb5FEBuTWb2aoXGaRSQKzoobUKaP61SRNiUONs5pUx+gM70B64rVIlsA02ck1qjF2Bik3ArQm2ITQntU0UmARvQEUIHYGDQEbVqjLYJSelIUn1/Si0gqxsigIPTpVozYJG+woCDVkWNn0602RUN0zRKxpQ22oCNverRiwMbU2RVogbI+9NEUxWAR7ZoCnbpRZXQJFNqG3pTEnQ2pOPrTZTvvTQ7EI8tDp29qdjq3Zq0p9OtOBNcfs6RwJ6UemmUGE70Wn9aCWGE96MD2pDoIJ/WjA2pWMLG9HjpQAQHaix7U6Eh0DbpTmgGkWdp9qLGO1NEhBJ70YG1A12GBRgVPRSHE9akoGpXSs5FphlB7A0gSrPTepsscA3xinUkjtUMA8+1LU0DF8vpiu0pzmmJiYGfSi00WJHadqUIqCjlIB602UoB2qlYmNlI7UoAA3FUSLkUScFYycVk7NUO4STsaFSPfNCDQmPUfvSd/emKiMvJNN6STVIn2KEmlCSTQ+hhYA60Cu+akqxhQOTTRFUkQ5CHrQnpV0K9AnpTZ6U0hN6BO4oCM1pRlYON6TFUJAkUOmspOjWKsEp3ocVnyNGhCkEUJTtRzoXC9CaKEp3/wBqnmXw0NlO/SgKNq1jNmTikNFO1NkV1KWjn4b0CU+XcU0pO5qG7YftGymm1J2rZdGL7AKfvTRFUiGgCmmymqZC7AKN96Ejaj0VpjZFARQnsaSXYJTtTRTvtTJB07UOMJoGa4J9t6cCdq5UddBhODTgT12p2V1oID96IDbpR2DFCaMDvSskIJ604E7gUgTD096IJyaY+g9OKIJ6UrEGE04E75oGOBO3pS8uixtaF0nv0ogkUCQoT2ownfegf4DSn7VIQUjfvUNNotElCwetIQNW2/pWPRrdhYogk6aAXYQBzSkEdqnVkvoHcHpXZ8v+tUSJk5+9dk460CsXfIowTp3pUVZ3b1ptWcYpgcEjvR4HQigEzi2mlCB6VDLQ7p29PpXEA96gACkDG9ApIKeu9UF0hgtkmiCT3qyRNBzsK7Tsc0MPY2o42FMqNJIqwCP1psjIrRIxckAoUNWRYJ69KEjrVUF2CRSYpgtCY9qAjFQ7LQJG9Jj23rKfRpD9x2mgKD0rjbo6aQhRvtXaKOQ62dopCnal7AbKaZUnc962i6M5KxopyaDTtW9mVAFNNFPfvXRA55vY2UjHpTZTtW6RzSGymg079KtGbbsApP2psozTJ6YBTgdKbUmhlLsAp29KbKcCpobdgFO21NkfahsQOnamyn22oGnuzYhO1OBOK50dS7CxRgb0imFgacUWkfemMPTtRBO3SkJhhNHpNADgTvRhNAMPTtRBOTQHQWntTgHtigEFpNHgjvQUHgHFFoyCQM0gR2jFKE9hTBhAbdaNKdqllIfHoNqMah1FZsqwwMiiwKkoLTt6Cjxn3qLGdp+9CUU0yHsDQaTBAqhBDON6XPtvQCCGPvSECkB2kfeuA82M0wHS2dO1cEGs7sqhcEfShwM9KBnEV3LBGcfqKAEUgjoO1MqVjqKa2JvQAUM+tCpW21V2K9DB3oCKtImwSNqDA271RmwSPNQ43rQh9iEb+tDpoB9g6aHFBS7EI3odO3pUN6NF2DiuwKwkzaNHaaXArlZ0HBO52pdG1ZvstAlNAoVSWyekR1CmiK6ktGTY3igKfatEZNWAU96Apz2zXTF6OaSa2NFP0oSmtk/RztAFFAUCmZ9AFG/SgKdtqsnY0UGgKNqljTobKKbKNqA7GSkZxSFG1Ia6BCBSKbwnpTQWjWBO1EBvXMdwWn0ogN6QUGE0YTTF0OBPXFEE5FAMMJpwJ/SpYegsd6cCcdKYqCxtRgUDDA2ogmgLDCRShPSiyvQQHWiCcd6VjXQYGTv+9dposKF00QyO+TSDaHU7H3p3OU4NZssVPcZosDAB6UhBAeho8DHWkVZ2+PSh70UTbOz7UuAfpTEdpBpdI9qQCEYrsUxPQJTvSgb9KBDmTt3rio1BpbQm/wB6XvigSegs5G9CTjpSKsbWc75qIsnNUuge2NnOc0vUCmiZdHEAUArUybExtQEd6aM26BIoSKsLExSYoBA42oSKT6KW2DjehxWF2dNA6d67TtWbtmi0jsd6WocS0zsClrNxKTAO1MKO1aKNIi/QyetAQfSm5V0KgdJ+lJprPkyqAKfamijqelbwmZyhaGiih0Yrpi3ZyyR2mh010raORrYBTtQlHemToaKKbKRQKkNlOaaKKdhQ2Ue1do2pAxCgg7ikKM+/vQSaUD70QTt0rjPSDAown2pgFpFGE4xRYPQ4B2own13oEEEn0pzT0z1pCdhBP3pwJ3pisMJ39qMJ9KCgsYxRhJ6Uh0LpxRad6YUFp39aLGB70higb0QH6UFBBIIG1Fp+tKwCSMHGOtGBU2KwsDG29LikM7T70tIAsUuKBWJilApiR2PalxU2MXG1Dj2xTQWdjeux3zQIID7VxT71PsdiaT612CR1p2FUJggmuxkUgGlAYoCkd6qgsDTtQYwaYrEI3ocVSIZ2Ce1DgVoiGDihI2pkvoTBocbUw9CafSh0771L2i4ugdI+lcRWdGyfsHT2pMUUTyExSY3oa0UpbBxSGoo0saV0psis5dloAjeux7VkzQTGe1cU7Y796KYWAUjBoCnatYrZm3obKaaKd/auqJzMXRtQlPtXQujkltjZTQEbb1ZA0U702pNKxUwCjbOKAopgAUUGjegTFKc70mjIPegk0ITt6UYTXFZ6oQTtvRge2KZOgwmiCaVk0Oae9GBv03osF+QwmjCcj3pjqwwnBHrRhNAkHp2osHNBVBBO1HilYBAbUoT7UWOwwKLTSsBQnNKE7UWP0EE0WnapELp9qLBxQJ9BAbe9EB2zvSbGhdJpQg1N0FMLQc0uiiyQgiiCBjHrU2UhdAxtXaPahMd2IUjGMUJRt7U7J0do33rtG29OwFCMGiLe2etS2UJp3xikKPSlYgCPUUKgdNWhMax7UhHtVkAFJ9KDTQMEikxvVohsEjA6ZPpQkbelVZFiY39qQjanY2Dg9KHBzUj0Lp2oSNqfYrB09qTTSL5aEIx70JFOybE00JTtSH0BpoSnalRrdIAgfek0be9Z0aKQGnak0+tLgNz9CaQKEjfaq40RyAIoCKaQnJAkZOaTTv7VtFGTdiEfpQFPWtTn9jSk702pP/DTvQmNFO+9CU7GiyXsDTQlOBtVC6GyNqDTtSfYn1oXTXAeWqJL8J2owkVwHqhgbf60YT6UhUGE+1EAM0CDCTmjCaBUGE+1OAU7GEEijCaLEEBt60QHtSKXQQG+KLHSgQWn9aLTTALG1EB60h+wgN6MCkUhdO1GB9qBBaa7TSsBQmi0e1S2A4E7binOXneobKR3KwKXR7UuQqo7R7UWMdqAQuD6V2PagQOPauIPQin0I7G1EMelDKXQuE0uARip2MTQN80CgBsKEIYxvigUDWpkxsg+tJj02rRCEI3oSO3amiGxsjApNNWIQp22ocbUCEIoCN6TKExSFPemB2NqQgUEg460hTkelAxNNJpoGgCN6HTTEdp2psp64NBSB070mnelRVuwcUBFMQJTSFG3WkIAopsp33qqBOjtPtQkVa0Q2Dj2oFD7U1shr4GyN80GKZK2NKwO9NEpFK0CTBKh2O9cQKpOw67Gynf1oSMU/ZL6O00OMCn6FTSNBj2pwDfpXn2epVBBP6UYT0osX5DCdxtRBIxRZI4B7UYFK9gHiiA2p2KgwKIDYU7KCxjpvRY6elTZQYG1FjJp2IICjHQU2SLppQn9O1KwDA2FGBSsaCCfal07Uh9hae1Fjal6D0GE5pQnfrSsTQQFOge+KhjHBS4zUFiaaXTQIXT9vtSaP1pWFCFO9JpOd6qxdiaSO1Lpp2I7TgdKTAxmlYHd/ehUMUewG1JxTKh2rVGT0Bjb3pCNu9aokHG1CRTI3YhT+lAU96tMQhFJp2zRYgCKTTTGJpHpQ6d6QWztPtmkKaYhCNsUhTQMHHX+1IU7UADppMGgGCU7dKAp60ACU0OPUU0UgSPtQlNAA6aEjagDtNNkbVZO7BxQEd6BUNkUBAp2L0AQMGmldDigmtkVYNMKScEdqyd2boDTgA0QWSnGM0J0KUbFBpSBjNbWYtbECd967FUR+DQgdKMDevPPTQQTRhO1AP5HANqIJBFAegwnvRge1Al2FiiAG9BKtC49PvTgGd6DRBAbUeKACA2osUCCCem1GEnaiyQgKLFAggKICgYYFLjJqLGmFjeiAGaBWGMen70ux61IxdNdposBzp1FOA77Cs2rKToXO/Su/pRQBD712+M0vZQBzXfvVEM7t0rqAEV3oPagRxyDSYpgAremiK0RkwcbUOPbFaLshgkb0mnarJ2Jj70JTQITTv02ocbUBYmkZ96Ep9qdi7YOmu071VgIRQlOPahEtiYpNO1MpCY3oSN6ABxXY3oAAj2oCPTrQMTTQEb0B0Jpocb0DBI36UJG+9ACYxQlPlpgNlO/Sm1Cq9i9gEb02R+lMQ0oZ+tMKGPekyhpQ74702pO2agoAJAzmk0ppitjZ6+1Er5QaaIf5ESTncURG2/WtEZum7NGB0owK86z0wwmjCaVksMJ26UYGBQFUEBvRYoGHjv2pcDOKYl0EE0QFFh2OAd6MDakNBBNEBQAQGBRgb07AIDeixSJCApQKAYQBzSj96CQhRYoGL0rsUDCA3oqhiuguopRmkAtHjPvQV6OpfvUjTsTekxvTtEsXG9dpOKVlLYJBxQ43qhCGgIPamiHZ2+PehKdqsm9AEfpQ4zirRn7Bxg0mMA96q2JiUhG3enYhCKHTVIWzsbUOKBCaTSYoATApMb5xTECU7UmKdiBxvQ4p2PTEIoMClZQFJjaixg6dqDT70IBMHNDj0qhdAkHtQkbdKChMb0JFAhsimyKBMAg9qaIOKB0NFG/SmymgY0pNNFJIoEN6fWh0Ae9MQGnf2pSnb1pifQgG9Lg1SMzSge1OAb+1ebZ6vYWKMJ3oskPG9GE07JCAogPagAsUWPaixhAbdKMCgYQTTgFFgEE9qMA4pNgEBtRAUrAIDaiAoskLHSlAosQoFLjc0AxcbUtISDx3xSgUD0FgY9aUD3xSBhhPvmiKe9Kx0JjalxSth0FpHSuxvQMICi0jvUtjoXApDip2x6Gj1xQY22rREMTAoSNqshgnrSVSM30AQc0JFWiWDiuKaqyQcbUmKYCaaTG9MR2mhIOaLDtCYpMetFjQmKQiqsz6ExvQ42pjBxvSEUB7Axn6UJGKC6BxtQkYoAEg5pMetAAEfekxjHrTsPYOMmhIoQwSMUJG9UmAGmgKB0osASmgKPSixDZTt70yU0wGik02pHloExoppsg/SgT6AKds12k4pkiYOQcUhScUgpGlx0owK86z1KDAwacHTpSsVBADbNEkAJAHQfeqF2GBvRAb0CDCd9qICgdBCjA3oEEBkUYFIBwCjT9M0xoPPtSjB7UugYoH3oqCfYuBii96Vi9i42zXY2otk+xQKXFFgLSjpRY6DAogM0hBAD1xTmD2qG9jR3vS/UUrKOrse1FiWggnIpTSssEgYrseWglgEb70BxWi2Q77BoashsHGTSVVszYmKTG/wDaqsQmNqTFMQhG1JpGKdiE00mKdjE0kmkxvRZIOmkwKaH6ExsaHGBTJEx2oSKdgCRQkelIASKAjrTKQyo4OKTJzilZpQQFdjHtVKyAcH1oSKoSBxSEb0D2DihwNVAnaQJSOtDp29KAB079KEpFAxopwaaKaoY3p2zjNNlG24pCGyj9aAt96AAKNjQ6etACFIyM70JTt0oEaED70QFecemGE0YG1F2IMCjAoAICiCadiDCTRBPanYdBBJownelYq2GEnPQ0YG9FhQYowPWiwCAogKBBBNLjpSEKE0eKLA7pS4pC9C4612KdioLFLg0AgsZrh1pWHQYpRUjCA+1FipGEE12mlZVB46YpcYqLKoTb0oSAelUmJoaV1ps9TWyMWDgUh+XpV2ZsHG9JjGaok4jb3ocb07JFxSYoTJExSYqrATFdimMTG/pQ4oEIRikIpiBI39qEiix/gHFJpzVC6AI6mhNAIEjY0ChRZQ1o2oCgkiguxQCO9dTJENJinYJA43pCN6ABI9qEg00xdg42/wBqTTtmnYaEx5SKApotBQBGKbI9qLBjak7UGnOQKdjEKMHGKbKKVhQCketNFODvRaFQhTQ4ynFMKsux09KMV5lnpaDH60QosQY/ajHWix7CFGPrTskLsKMUWMMdacGaNAGCfWjBON6NAGCc0QPsKQgweuw/Slp2AQ/euHSlYBUuKRNBAe1LQSLiuoChftRDrTJQvelApDoXFL2pWMUUQNJjXQWdq7VtUlJi6qWgaYhNCScU0S+hs0ON/atUYsQ9aQj3qiBCNvWux7U0I7T+lDimmI7FJjbNUSJjvSEelA6OxvSEUEiUnenYAmkIqrDoTHrvQd6LATFCRQJAY/SkxTHsHA3psjegKOx+lAU+lOx9CEUJTRYewcb0mKdj7EPTPShI70WFWgSKEjNFh6BxvSY29qoAcHehKTQAmihKR6UrspJAlKQaA4z0oAA464ps9OlMBpXTpj7U0Rv70xOxD8ooMbVSJ7LYU4OteWemH360YHvRYqDB7UQ3xvQMP7UYoQhRRii9ioMUYpgGO1HnFA6CzRj9aVkhf1o6YghS/rSbAIUvvmlYgqXof96LFQoxRY96LGLjakwaVk0L2pfrRYdBZzvSg0gO/wBaXvQAnelzvmmIUEUWRSGIaE9KpITEO3ak7VRmxO9J23p2Jidq7tVWSJ2rqYqEO9IetAqExXHanYA137U7E+wSN6SnYxNsbUJphQJoe9AkrE7UPanYUCemKE/vQPpAE0hPSnYqE2x60hosdAHBodqYVuxD1oTTChNqE96BgE9aHO/pQOtAmhNOxAk4pM7UACTQE700xOwSR1oT60WOhs96A/XFMKGidjTRpkvZ1IKL0FUyxBzTgNeWemGDRA7Zph7DB2oxvg0WA560QNABDrRg9qQg6IH9ad6AMGjBpAGDtRg0C6CBowd6BUFRA0rCrCHWiFMVCii+9S2B1LRYVoXJ3rgftT7EEFUud6kZ3eu2p2KrFrqYqOrqLCju3WlGxoCjs5NcT+lOwrQJNJn1q0zOtCZpM+9Mlo7NJmmJIWkzQFCZriaExCZpM7VVkpWJ9qTO1OxsTOKEnagVCZpKB0Nk79aQmnYqBzuaE9adjS0Jv2oDTCtCGh70woTtXUrGBQnamANIaAoD6DakosKY2aQ5z0oHQJzQEfammHETtihNOxUDQEnNOxUATQkmiwSYBNNnrTGAf+Zps/qaBUceldk6euKA2SwqjCq82z0hwK2pwHanYBg0ed6TYBA/WiBosVB5FGFUWFBA/pTgI70CoMKogoAU/YMMK3ogqlZIYVRBXQ0rAUKowqgAgrfrRaqACC67XSEFq22pdXvQB2oV2rIphQurb2pdVABatqUL9KRJ2ul1jNAC6hikzQUdneuyKAoXVtSlVAAE0JV+taIhiZNdn9aCKEzXZ3qrEdnrXZ360WITO1JmqCkdqpCaAoTVSFQ+tAqE1b0OaYdiE9aHO9FgCTSajnFWL0DmhJFAUxCdtqEmgBCdvehz7ZoGdmhKv0ph7E1Ck1JpbGhNQodQ64oKBKk4oSoUACVj0oCsd9qAsErpCsYoHYGoUBIzVIlsAnfNNnFUSNk0JVTJ9gaqbJ96EVQJPrTZNFhRxPl9KTO3X70WTsdC6cC6849AdC+lGHKAHAunAugAwvajCs9KACCqMKGKADCtqMK6elABat6LNAChWcUeqgTF1UYUcUCoIK3otW9ABah60WrfagQurei1dqB0KFV2qgQuqi1bUAKFUWrakFC6967X60CO1/ekCqYHa6XXQJHa6XXQMHXvXa6BCazXa/1qqJO1712vamI7V60mvvTEdqpCr7UCo7VXaqAoHVXaqoVCFVJqqhUJq3odVIKB1bUhVTCgdVJqoChNW9CT2oChNW1Dq/WmFCaqTXQFAle9CVb0CB1UmqnY0Dq3pCrf+1MYhVQkilYUASM0JVTsKB1CgKqdhQJVQle1A/QBVTZVkU7FQ2Ve9CVU7CtDZVvQFVMVAatqHVSChCsUhVt1ovYhNeacCziuE7/YYXgbU4Fn6igAwvanA4aBexxLhxTgdP3oAIOmnA6aBBhzei5hoAMO9+9GHd6ACDg704HM0AHrFEFDPWgAgsY60YUKXsAtQx1pdW/WmAWral1UAdqpQregli6ulLrpAKF0uv3ooELrrtW/WgdHahXaxt/rQI7VXaqYUJqrte3WgR2rak1UCO1HNdqFVYhSr3pNVAHat67VTJo7V6UmvagDtW9dq2piE1Umr3oGJq2pNW1OxCFdDqoChNW9Jq2xRYCaum9JmnYA6/1pCrf2qhCZ3odW/WgPYmrak1UB0CT70mfegKBzSE9xQCQJVSFW/qaB1sAmgKv1pgJmgKu9IASrFAVVQDZVQ6u+aaYAlVAVUCAKutAVUwYBVtTZUKBDSl0IVQFAlXm60hXQAoV6706FVxHcGFbUYJpgGFU4DvQAYVTgUNqADzRBQoJoMGjCqBeg80QNAULqo8nFAhdWKIKPrQAYWRShZz1oALmEY3ouYfWgBeYcdaLmnHWgDuaexpeac9aAF5p9aXm+9AC840vOOKAO5pzS82gDubil5poJo7nb0nO3oGLzq7m0BR3N3xnNdzqBejub9qXm0xCc33peYKAE5gruaKpCF5g23pOZSSA7mb713MHrVCO5m3tScygKE5gpOZQKhOYOmaTWKB0JrpNY23oEJrHrSax9aB0JrHrSaxjrVdCoTWPWh1bUWB2oUOqlYCavLQ6wKLAEq2O+aHX71QCa9qHUKArYJUKHVTCgCr/agK/egK2Dr2psr360AkAV0BXtQIQrHrQ6htvVIAc0BVvTsBsq98U0VDHvQFDalb0JX+tFgBryevSgKveixD4O2aOuJHYGDjvtToNNgGDj/ajB3pWAYO9OBW1KwHArpRA5oEGDRA07GEFetGD02oFWgsilCt6EAWd6IGnYqCBos9KQC5rs70rELnal1fenYUdnNdmqEdn3pdVAHaq4KPegBdRrtRx1zQB2ul1HtQAmo0hUaAE1frXazQAoX6mk1HOf70wO1nFJzDnNAHcw/Su5hx606JO5p9a7mkDNAheae9dzTmmI7m7e9dzaGAvNpObQgF5o9aHm0x0JzBjrSc0DO9AjuaCKTmbUAIXBQ8z3oA7me9DzPegBOZtSF3femAJdpOb74pCoAve9cXd+tAwebv1oeb706sBOd70PN3600AJcoeaBSADm+lDzaLAAu02Xd+u1UABdoeZ70xCcyh5m1ACcz3oC5VdAAXKbKxQKgC5TKnN6QCczAoOZsaRJPB2ogoZ965DtDCqPO1IQ4FbUQVtQA4FDNOBW2P70AHqogdqADChRBVABaveiCqAD10WoUAFq9qXV60AFqpdW/tQIUL3ote1PoKO1jNFqB6mgXQoO1dq2oCjs0uaCRM7Uur/gp2B2dq7NFgdnFdmnYHZ29qTV1pWAmrau1VQHaqTNIBCquztTAHVvXZoA7PrSat+tAmcVbV2TTEdq7UmaLDR2aTNMKEKtq7O9UFCFX2odVIQmrek1YFMdCatutCVGgQOvekKzjrQIHWaQuHagAS4c9dqHV+n1oGDr96DVmgQmrehKvSmAms4oSs0hgleE96Er96BAlZxQlf6UwAKz96Ar65osASs0gWe5qgO1npmk1HFMASv3oSugQ0V4psubUwGi7TevJ65pAAV0ms4NMVFoFdN6cC9utcJ2egwrPSnAcUxChVGFbUCHAqnEr3pAOah0PWjCqACCqIK96AD1bUoVvQAQVRauu9FgIFkCiDgwKYBBz70pWNvSgBddFzKAO1nFEHDmgDgvA64o9fvQB3M3peZue9BJ3M9qXXQCR3MFJzOlAqF19K7WPWmAusV2sE9aQCaxSFYz1p2FCasd67mCgAeYK4rGKpMQmv32riuiwE1+9dr96YHau9dqoA7VmuzQAmr3pNVAHavtQ6qAOzvSaqYCaqTNAA6tqQq3p2IAq9KQqpWIAq/3oSuqsPYBVQlYzRew7BK/NQldFoQJV712v3pgDq32NCV0gEKs0JVsaLGAVChKtqYgSr3oM7mgBNQ7b0moU0B2r7UhVg9TVACVCmlL9aLEMlXvTRV70WA0Ve9Bq96YmIVb9aRStqBdlpqx1pwL3ris7djgXRhfvSsnsLmJx70aVgilYhwKFGFD1pgGFCj1DFIAtW2KIK/+KYBBe3WlCxR/AB69utKFbdaEAoVvXFW+aAELtLzD7VIHBwnvRBR28370wHSVJb3NNh2gBQ6RtinA6MDamA4Vo0JKVEq/mBTjH033pNe9Cv2B2uu1mmB2s565pNR9aZPsLWRtmk19KBi66TX7/pS9k+xde3Wk10x0JrpNdAjtdJroEdrpNe1PYHa9qULFAA6x67UuvbrRsBNfvSlzGd6YCcz3ri4KYCczPeuCxmgBCvek1j1pgdr3O9Jr260ADrGOtCV7UACVmh19qAGyr3pNdAgSo0JUcj0oD0Bq3NJq+1ACFXSh1UxUJq2pNRoCgdXWkKv96B0AVUBWBSBjZcG1AXKr2KgCs536V3M2xmi9iO5h2pC5VDoBTnXamlOelBI0XBTZXtTsANW9Jq2qtAJnKs0BVSsWyWFu4xrGKeSo7Anf69a4TtHAs+tGCc9cCkILIKhvT6FaUnB/emKrHg5sMU4F+posVBBYNEFj2osKD175pdY9R+tFoKC5nbIpA4PWlYguaM0Qd+tFgLzT1xmi5hPaiwO5hxii17/7UwO1Uurcev1oA7JJ3Vn70WpOPU0ALqFLrH1oAXmDPSu5lMBeb0ri7kelAAhzbqa7me5oQguZnbNJzN+tFgdzDnrSczzdafsZ3N967m+9MWhObv1pOb5Tk/tQITmGk5uOp+1FiR3N3613N96YHcyuDlAhOZ713M367UAdza7m5oA7me9JzP1p2Bxc713NHSiwE5m3Wu5nvTsBC5t1pOZt1osBOZ2pOZ70WAJc9KHX709IBCv3oSuiwB5nvScz3pgCV0nM9aAB5nvScwUAIXNqHme9AgCs+tCVnHWgYBXkdaAqNAAFXvQlXXagAdVDq296AO1n0odZp2IbKs+1NlVVYn0Nk7bUBJwKBMTPek1etMQoPfNATTQEkF3t+uaPLp2IGem5rzjtHUlwK6A/elyvJJwPvSEMCe13X98GnRMbSwlZ1LSokDApbGSG32y2lWFBJ6E/UD+9S0Ot9iDn3zQnYMdCk+lHqGegqiXYQX7Y+1EF7dN6LAIKogo0BQeVY70vmxRYqZ2+aIE/SlYqYmoDPmH60WrbOQfvRYUdnA/3rtRp2gF112v607EdrpdZosBNZruZRYHczy+1Jryc07A7X75rtefpTsDte3Wu1nPWiwE113MpgdzN/wDWk5nvQBxX1pNe1MDi596TXQmTR3M96Tmbdadg+zuZ3FdzPfNKxdCcyu5nSqQHcz3rtdFhR3MruZvSvYjtYpOZTsYnM3ruZTCrE5nv1peZv1pWOgS4BSFyixIEubUJd2piB5u1AXaABLlDzfenYCF3ehLvvQAPN9964u7jegBC4MUJd260ADzds5odeNxtnrRYAlyhLhz1p2AJcOaHX1osAdZFJrp2AnM+9JzcHGaYAczfrQl3amA2Xfem+aOx2oskEu0nM96sKF5mw3oeYNNAh1M+Py0K5myhn6U6iWy4sgOYOM77V5Z3Ed6YvnrQhYSlPfPWgTPW2cOEuAjbB6e9A2tFdr9/3qxS4DaGf/8AYf7VVkInpd02ZtROydX/APYVEalH4nmJSfm+tSimWYnugj8kqHfApRMf045bhUTsS3RsNDiJUrUTylqz2xjFOfFTCBiP27kUqC0GJEtRyGse2Rii5k0JBQQDnoSDTJdE1Dqyg6spPY6s06HBpHmJ+9AgcpByknb/ANRriQobqP6mgDtLeclOr2zRjlADLI6/5qAC1N4wGyE/++hKGtgNZHpr6VNsBgpX2WQO3mpQlwYy7g996oB1JWlf/cKh6GnA570EtC8zfrXcwfWnYhObXcwZosQnMTn3pdae1NMBNac1xWnFFjoTWnOxpCsYp2xCcwde1IXB16U7AHmCkLgxTATmjFJzBmnYCc0ZruYPWiwE5vvScz3p2I7me9dzf1pWHQnM967mUWB3Nrub707A7ne9Jzds0+hVR3N360nN7UWM4u7bUPNpWB3M264oC7vTCgS7vQlztmnYegebt1oS7QhUCXNt6Hm07CgS570nN3xmhMkTmd80pcp2MHmHPWu5me9KwB5m3Wu17dadgCXBQFyhMAeZ70BcNMKBLm/Wh5m9AAF31NCXd6YgS770Bd96oAC7TZd260wALm4rg6RTsDubXc3frmmiaKppaJC1NtFpTiTjKiEg/qasvi20NckBtxYGD5ev6GvLbPQVdgktu+ZD7alrGFJCht+pptClG4cpRaGoBKdZz7bd6VhRciHMTGXh9kBAwpKY6thttlSR6iocVye0dDL+oa8BOAo59N/6Uk4tDqiSqTeXdKVyX1NHo2HcJOPYVJU8qMlOp5psg9wST9d6NehDrl0U42AHmyjuUoUk/saY+KYdSkkBxWepWvP7qoVgTUXFaUhKIyCMb63lZ/r/AHoV3J5KgUsoOeg5mc+v/M0K77FoltfH3B7Q2w5EI2/LZWvNPItN1aU2pUxQK1fI4jfGepGdhU8ktBwJa2HkOutuPttFKfmVgZPtlVQ2WpLa1LdllxpKcYLJyo+2M01JC4nPynW2FKZZU4vsNJz+lQod1ekTEsqYSVrVpRg43p+hcTTpgztPmXGSrPQPdKZkxZ8dgulUblp+YreGwqbHSRSquxEpaEtczA6IOfuD6Uibo/uCwNQ9SQMVRFDTl0kBxHlQgA5UM5zVvzZDkNa48V11YRqCUoKv6UNpDorV3dxooDrJC8eYHbf708zdGXZfKOUeiids0ySwS4hZwlxKs9MKzUf4yPzi3zkhQONzt+tKwoV6W1HKOavGo4FOJfQuPzUuJLY3Jz0p2KgWpDTxVynAsp647U6FApOCDjY4PSiwAQ4hxOpCgtPqlWaXvvmiw9HZOaEq2p2I7UcUOTRYmgd89KTcU7ChNyKTzdadiE83pXeb0+1PkB2D/wDFd5gKLAXzV2ojoKEwO1H0/alKvYikmAms5rs1SbAaWl9QISUp9PWhSh5LRGsKX2zRYA8uQokFQG+xFEluRlWSPbp/rRY9CcuTrxgacdjQKbmY8unHrRdDpEEyJKXSgqClJ6p2oVSnm3iFgD1Se1CYUL8arocewzTrbzzyMttFwDqU9qq6FQSvi8eWOTvtt1oFKfTuthSQTgUKSFR2tZzpbUcegpfze6VD3I2quSHTGyog70hWTjA/frTsQmpeCdJ/ShLhHXalyQUNl5KRkqGKH4lGcBYz23otBQReSGC4XEhIOPnGr9M5pv4lspT5+uwo5AEXPLnJ/SgU7t/MfoKXJBTGy9tulQ7fKd64LVjI6+9HNBQmpR2Az9KbUsjqapSRNAlZFCVqquUR0wCs7U3zDT5Jk00CVn3oSvFWmIDXtucUhc7CrAHmb+lIXdzigCgEoNlWI6easnSCo5Tv1G/9ar/xNC74zCceQ0+sFTYJ6ge9eTyS7O6tl0haSlC0tpSjI0nfB+4p9MhpvSp6O25n0cIUfSgOiUbmwWVMpShhxBAWlb7mVfXbH7inlXl14IbLDIQjJDiEKCv1yM0uhiMz2XEJ+IKEjB1lTQyn0AJJJ3zVgJdqCAVhxwk40FxQyf8AntRfwGqGmrolSg67FUgBQw42pQA9+tOu3JsrUFKdQnYpWmQT137mkDosEToBjnkOkSMY/LRhR33GcYP1pqTLEcpLrzralkkJSUKUMe+P6Uv5HXsmQJ9nM0onLkEJGU4yrf3H+1TJc+xqQhUW4BwaSVc+OQoK9MgDb70tph/BAi3JBklH4g3Ejg5whtZKt+m3SlnzYPxYksSxKVkgNrccO3vkAinYejnLqwYwQhSMLwlYATsPqcn+lWcTiWCxZygtlp9CtKEtNISnR/mKzvnPbH3qXtaEmPN35trKUSG3MEBpa1q1BAAABARikk8TfEM8koQpOd+qgrB9CR/SlsdER+7xFrQW2FI38yUAJyPrvT/xTYaVLMRRQCUFvYgH66jn64p8q9kjy3LdKfZddaFuUBvkHSfbZFUzb7Ei4qaLygCSQVL0jr6kE/tQpD0SluQWWZDaoxGgjlqUtwpdJ9AQP3prVEDKpDNvdDCN+asZA36bgiq5V7FSJAlwGVjm2tWrGSRlOPf3zUVUmE7rd/DWwgLwEmSU7f8AtG/3ot/In2FLeXLW3FZitLSjfDS9ZHqcjrUhtlEeOS9CKFL6jQrYe+ftQnrsVbHoscvTS7AguTI+COWw0oqz/wC4JOKekWWc1bTIVHl22MVAYeUo5z6AJH6Uc0mOrKpMRcQ81uQrGQCkakkg/VNPNolc3cyg8tWls6spOexyKrknsHEVFvmNPuc5T4VglRQkkH74ph5lrnctDshh0jGOUpWf1xU81YqHFGYmIUOvOpTnynlkE/fH96a56g0kfHugEf8A+MH981akhUgUzX0OoWl9bqc4XzG8BPbepAl8tRcXMKgdxlBCaXKmKhgSpi3tUZ9taSvosgdN+9SFT1hhLhkxGyHMKa86ifuAR980uSYqIqLi+4VuJkMDJ2SrO2O1K3cZug/9lxRPkGcZ3p2g4jxvRTzW1xwl9BwUlwde4pxq8NuoXpZI0jYKcSCf1pi47E/EJYdaUuIktKT0Q4Cf2O30pt6dJYS1z4L7KnCAjJwFHpttvRaCi0bS842FhL6fLqOpIwnbO57VCkPzY9xZZejPtIdTlsqbGVH2x2qVKL9lcaIa7lJTKUn4d/lj1Zwfen/jlpSk6H9OMkljGP3q7FxHxJUUZBUo+nJOR+9NmZISgrLH5XUL0jBHr1o5BxBTcyqPzAgFP6GnETyc8xvlHGUhQ6n0pcpBxRzc9x2QplqMt14DJQhBKsfQCgF0HOLSmSFZwoYIx9dqFJhxQCZMB5862gFdyT0qUtEAOJShHNV1PL3xT5Dohh6ObtyVxk8o5AcUnAH3pu5BqNFJDXKUXMpQBvpA61NvkV6KtudIC8NuOE9hnI/SnDdZiFAOqPoErTV2ZgKu7qiFBaem3tRi5Pg45wG3Q9qLAV24PvJAKWzgbqA3qIZL5bI14SfQb/rTUvQaDRKeCBl57bph0gUq5HMUkrddOnp59/6VPIDkkOOBJeWQe6t8VLMdWoDnAlBwCEimpW6G1SBXHK8a1g/brTao7RcJUQdQ6Db71ZFodCV6AFOFVIQQB5s1HELBJPTJP3oTq7KxQo7CxAVDI1bHr2zQhAwTgH6mq4MdoEhQzuKHSoAYP7mq4sVoHCvUfpSaDnqB9qdBaF0L6AjFJoONwKpWidMEtp9KjqQN62TYqA0DNNKR6VXImj4iuHijxG5MgI3C21f91I5YWdiM52zvjfIII2r062ce2u1cELulyicqa66FMNF/W47qJyoZAwNWQcbZr84wfqM45JPMtHq1rRspXiJw+mBFcYdW6X0hSW2k6lgHbOBuN8DHXera1cQMT0oaWoNqeJShpwnKcE41HoM42z6ivosPm4s0qi7M+LLJLyGkLQ4Qt4KIPLXnUP1q7aLAhtFp0MoWrGpZG+/fODXoNkIcKYrUcrbmNPuhWFISPl98nY/YmkjSCi4OPKUp9B2GSkBPsTg/tTHWyLz1JfC1NBQzlQSonO/7fap7V0S3LX/0qmcKwlfMUBnbYEUr1YiRIkPJiq1kISTnmqVkrGcbH/h2qvZuLSnlnmELA8mslJSPQH/ahvVj0PNSnCeWpxD7pORvj96VteWXG3JrKErVlxbm5QcZ647/AFpJ6FsNp6Cw5Ik/iUdSY6Mvtl1KS2nHzKwoEAUkq6wYcOPGdmtMqlOlDGtf/dURnSD3OM7ddj6Gs3khV3oTVaI9vukefbXXoMlmQhp0tOKSrbUnqMjvV3FlJRklplxI8wS4nVt9+tCyRlG49Do55YQtepxrKupSgJGPYCiQ87H5padS40vYYyMH1pqaYUNrmxUKWksKW6gjWM7HJ7Cmm5zyVOgDLeMaSlIP707QmvgRU5AgrZKCoLUkbkEp9Tkf0oxcWQDGWE8pQI1hOFA57Gqu0L2Eysi5aGHVOOKSChIGem9TpMyZIjBpcpxaWzq0KdwPoAds/Ss+3tDXQ2u5yfi2nVuqC8f/AJVb46DrRC4SFylaHnEoKSf+nzhHffamvhgONTn2W1qEpxC1jqO/3p1qRhgjU8tCz+YtKSNvTqal02NDBmFtsuodW52QGyASodt6bduslp9lbrzriycAEnPvVJKxWyWq+lxuQwt0kBI0BKQAd+/6CgRe3mku6UImrKBvIb1hv0xk7Zz+1NR1Q+Q6q5ShHbMlhhCnM+ZCtJHpsOn2qI3KuLckobfUVBYClMuFYI7Hbb96FGKFtjxloFvWp1bryy4R841acg7Zz79qkzJLSmNMRSxGTuFKwopPuQAOvfFAFSHfiVFDDq3UqcGnBwSe2w+lGVvpDxDKgoKBUc7JSfr7UMkX4okHKEtoQR/IN/fJO9MOPvt61PJWAk+ULTsN+o/WjdgQXZbn4lyRlKVKwQB196tFS2kyg007zUkjJKQknb9vvVvRJISuKhaEupTzFpygkZG3tvvTBcYSzrSlaG8hJWGz7+tLkUEqVFSyA07kHbBSEgH9fp+9OOvKQFAvB9SBuckoHtmoAFVzdMUpC3AjG4Ss4A+9I1dX2pOpp8sqxnWheFe4yKEtUFjki9SHn+auWt6QRpypXzYHrmiZuswsGOqS4GCck8zUhJ77U6SQ7JP4gqPCSwzdH8AdEZST+hohfZyYqbb8W+mMW8aArqBtp69KnV9ARWZChHAS+vLI1auUP9f+ZoXJhQtTqXFqKldS2ATt9TitOyRpubJWorbkJAByrUnqPTpv0qYX3tCHnSF7eRbhyQfWldD7HXLi6tlKg+6uUndzOAMexH32NORJUyQhyQ1LaZfCiEoccwte3qB07bmlyHViouq3Z8cS0tNoB5jiUAbY2wSOmT296cXcIr1wfedcJKvkBbCtIH1UOu/bvTVXodkZV5hsSN2G3ApOlKlRUb/7+9V7d6V8TochNujfSloDbv3Bq6IskonRCzJU1GLTusZCjlWDt2759KRy5QkwgHNJJOEgNBZHuScGlsrSDReIpbS28zHAAKiQykK+nTNRHpUI6nEFvYDKcYx09se1TsnTDVcLYIax+HqddSdtMjSRn17ftVg1PsaLcJDkFSlLTugSs6T900nyrsr7SMq52gqSEWxbqwP5Xlb7degFTWZEBTqg3GOeUSUCfp06Tucke4/Si5LY9EViVCSw6qSFujOxQ9k+/wDaq9x5hMtpsNLC1D8sBerI7Yqot+xVEdXIQ0QhfNUAPMpp5Oc1Zx48GQhBYM8LcBIUtPkJxnc46fSrtronigDbgpnDEx8vFfmynyAdCckdj9KbuEdqBb1fEXFQVzQjZhQVjrqzjGPpVc2HFDITETeDCjXtqSCnWH1JKG8dcZXjB/b3qfJistFlCLxG5rg8oU4Ckn6joPrRzaYKCZHUoMSGmXXmnXVDo24FA/cfSn0N82M+7z2Y4QQEpc1FTh9E4BG3uRVcnVoXBER1am0FXMQoBWDsRv8AegUt5vKnEIbGR82xP60+TQuA4UuqjuLOAE42AJP7VX/GedxKvLoPmJQr/SrUrG4UMontPLIQtOkdVnIH9KbcmJQ+WykqI7hJx/SqUmRx1Y+kLdiLdQjyIxqJOnGfrUVt0rIyUJAOFdafITifmF+OKfnOPQJRkAODlIWyAkH1T10kHOCPQdKee4gkTGI7M18PriMpYSpWr8sZJHy+3bbOO+a/FJZZuPF9HpDEC/RYER1x5wzOWAQEp8ycKBCh5htgHsdz969T4W8VpkSCtHxCLdFThpBbRlbuQdTyzgk4GBjc7Adq9Pw/Il475dA3bo9u4R8SLRxGhTDLEeJNbIQxHdJ1vpxjV0Bzn3J232r0f4hBjhuc4ovhKBoaPsOpP9OmRX33jZ1nxKa7MmqLIX95x5SvwlqSy2MOamAok9jkD2ptu+sLcdEi2tMMKGtKENlCgc7YJByM/beurdXZN/JSfGPqmvlt0BSk7toRnPcYx07dKtWJCU2ZlJjgSQCVa3FADYbnJx3PbtTtJEq2SokmMuGkuqbZQVaVrd1EA4J2wD/Soj8lpmSuQw4hwIBAShOQv3wR/ajQ2edcd+JMPg+zSoaS25Mks6mpaHMCMojOCMZJIIGRnB2PavJXvGa/Lttv+FehtIREQXmWngvKdKkla+YQoK6HB2JwR7/H+Z52ZZJRx6rRSqjHJ8XZTF2cjR5LTsV1zMtLriihTekkpUnbUNatenITudt6lcVeKEy8Sn58RCWENua0NA6kIIBTqGQdKgAfMADhQz2ryZ+Vnli+n1Y3Qzwb4u3ThZlySu0c+IsHzNqWlK0FWrWEkbHqCo7dK+reFfE6xcXcGMzXJKYVzCi2mEopTgatKVatQO4wenU4Nev+neWoVhn18hp9m65ttK+U5NXHdUSptnRkqG24JO9RpbnwzYU4H3CCQdQ0pHb/AF/SvqU4shiR1cyItTwc1oyQEK+b69hg0+iTDSpoy2ltNagNJ9z1yKpv4FRbKkx1RcDDxQ4rQFJ3SP0/vWfZltKbeSlCmyhfU+bO/c/860J3YOrJ6AmY8VKWoy9glK1HJB779Bin1vTEsJVGcUpbY2GxIT3OMkdcUX6GkQPi2X3ULmOqiDXqSUt6gf0O1TlBlpwLjSkyA6nK0lBJR9QRj/4ptpaBL2NGaFR30B9pI1Y8rAHb16/pUdmWlolLj5eZUNKyEnyj2NTy30S+y21tKipRHUmOUk6WlOlSlH77e/aiBabcQ1N/L+XH5OVAnrnofb65pcvZegnnIzbpS0UPNJUCCWiknsRjB9/96r5LjratccqQtX/bDSsbehHpVKSJaJRlx22ECUyl1513ZesKUAe3tXIJbueptSUNhBKQV4IP9qlsf8El9XxCnXXQpDQ3JbXhCf8A06ldD9/tVULkgF1vCQ2fmysKSr+9UrJeiIqQETAmMpLbZb8ymxnJz7dPanuatcSMvm5LoUHFFWdI7E4puiS3LjItgLpjtuoCdL+CTsDnpkb7dcYqMtYfUCSpzuMebV0/bept0aJFc85zJT0tKtaULTlSG9KBkYxsNvpik+LbRMS4CQ5gq16vSr3oyJi50JyKuSYq2Ul3ShS3NgdOegT/AEPeo7ctmXEUXXHEK0knA8o3Az7/ALU99j0PFCjBTJaUEMpHl3yV+v0o2ElKHsLGhSEr/wC4AOg9Tv2/WiykiKZEZp1CnJAAWClSUqJ0fX/nrQMTGtOtIUpOcaQvzDfG1VbqyS1S7EdCQWSlLSTkuK0gkDJz71zdxYkNoeeSXUqcytpvyBAye+k7fQVlbYyW02bjIcXCiEoY87nJHyjoPMo79fbNQXw7HmSHHoi1oSvSE8wZaHfVjp+1WmrChoPM/FaEOoOGivCcqznon61dWKFHlMvvXi6sWqOEamjjmrcIHyhIO33xvWeR8Y2lbKirdMRRtzmpceUVpB8iXWFozjvstWKSO2ymQOfMacBHlBU4kavfCScfQiqX7doK3RfSYaoEET1JjR4qWEeRqSlwvZJBWUOHUOv+X6VSSpqJLTTdqjLcDigChKAdJHXAA6ms4yUuimmtAR7TMfbfWuFIcltJ5nISlQc04wDjScD647VKcadjWQvS0PWsrJTy5EcAkgaspJAOOnT1x3rTloSiiHb0R5Ds5d1DREdjWj/qEo5qvQZ6/YVUtXOMuBzXEOst6tIS2QQFY3O/bpVba0TSvYHPCHn1pSVqUApKjsBjv/8AFJHksyJwdkOBxpJGUuKCQTg7dc42FCvsQ1IfjyC4ppCm2sbJ19fXrSsuMr5oShIBSVad8qA9N/2oTaESVlKoIfKm0KKg2ED5lj13G2NqbklpuClxR1uBepaAvIVgbEADAH1NFsBlbyGyh/ztRykBWASEgnv2yfrVgZdwSmMI0sKYyQ0gNDLm/wDMkDcnOO9F62UhhLTzbi/y3gvJK9bJSEg9e21Pswpr8VUhhp9bDXnLgaUUDbfKsYFTzEolc+OWhxIQHU43cCySnOPXpRNzJUNhccOBlLo3QQM/bIz+lPlYuiK+tTo5TchCMdSvbSP0qU1KkMxVR2vzEHc698+m9XyQDqFKVLUl0jmY3SASAfbFGw3BHMkSJLvOSQI6UnA2Pmz/AG96tMdEYzXRc0l11a0D5StRJA/epyXVJdJRNjKRqOlBf8w29KqTr0OMeRzbxbSvRIbyU4P5iTv7dMVHkT5wCVypa30tgJP5gOE/3qE7YSTiuyai+XaO0y1FuBLSh5khSfL369Bn9aNd/urttkR3ZSFsrT59TSCoj2OMj7EVVKyE2Usdbo1xydDClkhokhJPqabMx4MO6F+ZZwVEZwfUE1fZJNLM1UNnDyGy5hWlxRJxjOds4GPvUqJcY8Nxv4yQyzHKiFKYQVq26E+uM9Km76LS+T8mmLdN/HVuslDrDCAg6k99QAI2znGd+nvUaXKYg3MPBC0gEgBtJw4B0J7dd+vt9PxyL5ySOr0My7qzcXFPstc11SQhQbJTlJG+cb4P/PSo9rYkSbAX8l5LSjykBeB6Hc4GAMnP0rdP6caZPb0e1cI8V/4avMd6JEjz5Xwx1LlKJQ1lOSQAQR5sbg9h6175auOrdcLd8XdJKYCk/O7pUG1YxnGST17eu3tXv/p36jwahk/aNx0egxeK406GiNCuEeYsNlSSjQopOMgHAz2rDPcYzn59xsjyo7q30rbSvmLQpoqRp046Z1knP+le55PkrhH6TX3Ogq2XfC795kpkR3ymK0xy22iMAOBAOVBR23zjHtWrfusVUpSIy1MgK8wUdX2GK7cKyKP3uyZONaEmPJfixWXZKmWyCobZTnsetZjiTjm2cOXFhiQ6l15CQhbCXAle2Rvkj+v9KjyfKx+PiuRNKTPHvGk2XibhVbsae+9IhLStLbLKnGnUrSFbH+XYHcHqk56ZrwOBBXC1vyXWHGpEcatwS2gpChnoSRlSCQOpIGcA18f5c8WTI5QfYqPOpcj4tKmEvFDTj2shTQTy87HKh1xjO1NtXWTym2ClSYzZB0BRAcSNhn7Cs1FNDRMcvDaLKI0YuIQ7kFKnMpSN/KN/X1375re2KXGslnDke6yyzJYUHY+wDnlSo5yQQckJwARkZ3zWb1Gg9muT4hT7c/BmiZIajQWlLjfm4CkqBVpxuTsM5x8wFOXzj2XKWy1FuNwdtzeHQ04tS1tpUAQkAqGcg56Hf0zilB5ONOQcj6X8IPERHEfAcaAJ8q4XOI6pEtp+PshtISE+bGCTknrnboOg9XTrNtPxDaWUlwFCycnrnse2CN6+38WafjxfsT2Wk1D8aA1MQ+040sZWlpaHMfXBJH1PeoKZCJyUtsrIa6rSpxLYCgO+Tg/WuvdWheybclFl5t8oZjqKcAMLC09DncE79Ns5GaajXu4vRjHTKdZjJypSUuK0qz7ZpLqyumVr7xckxj8RhSTlOSTq3+u37U/eHJrMtsphvwm3gC2hZJJ+/vWkapWT6G4ynBd3sBYS2gEo5gGQT3z12pHZvxbLaGtTYCyFqUc4HbH+lKk3YqH3XFNBSll4OlzUStBSCfbO9d8XKTAD7iVuuqWMa0AlWe+c5/UVNKS2NWOIcdeuDUdKVlokhwNjUU+pwPTrinua6gqdbccShGQXFjH7Z26UUkFMpnLgXZTylKL6kkFC1DtnHSrN910WZtQBd0OHWtSdxqGdJI9h+xpuNUT6IqZEhM1wrdS3n5tZI9wP7UYhTA6hamm1kqKcc5PcZ2GffrTtIEpMlOxfgorbh0vPuKIDSCS4k+4xj9Ca4ykNMK5UdTykjC18shKT3GMkZAxUK3sfTBfkFdsbmLS4phOyylGlCVemavmL1YX7a2rkyneS1oUj4wIKjgdPKRj7dqHyq0VGr2Z2XNt7essNuNgqwW17px/7up/SmpjzaER/zNI14KWx5dJ9N6pOVol1ZPkXBtyBHRIQy4wheUtljTkd8lOD+9N81L7iFRGuYCnChpIGOmRTTl/YXbLFLDkS3rkANiMHClbyUc1vIGSCcY6GoOqMhrkJcDwKvmOcODOe3QVPIdDVwjs8svRmVL8gU4W15SM75z2+lR25Kl25lDKNKkq82+Fpx3G+/wClaW5LYq2WzyXjbnmn3kvOaAGHFuA6QCcjyk9/X9qdiiDGsxQ4iSqZunlBYSkgZ36Z264qOX2lUJHmyYkR/wD8wdQgpy22w6rKgdj7YpttVvcdSwn4glWnmAtdCT3xq2+1QpNvQa6YxKmFF8kMx3EuMtL5ZWgEBSQe2oAjYbZArTybVAZYthj3xiOXMqccXILi0kdPKlGw6fzGtLrY+Nja50K2Q3MS1y0IVoa1xk4PUnPm67+/1puIbteX3kwWmm0ISFOOONttctI7gq6/QGly+RVvQyhJujSZVynMw2EOKZKVAFZWkZIxkDB69dqsS+qFbnfgxLbjOOBaJC9LLWsDYYGrJ+ih0qXSVFq7sq0XDmqKmVuuXN9wh55S9WvPQBPaqSbM+Gva25oclLSocwFWwOdye1KHKTIbT2WUaQq7vcyVKSxBTtoB822+NzsKi3O5RBdkNxYYYhFIytRBUo9yew+lXbb4pjXVj6LzZIza1x2ZLjy4+kHKEgE/5Rv0rOsT4KLwhyYsrYVkBCG9RByOoJHv0NbRUkS6NKL3BKHUtK0RkZ5QVH1FRI9AQB9yaVhXx8cuDEaC2AVqUgas4+VPfPtms3aWyqTJD0lLCxKQFoSk6WWgQVJH74z16GqsTXuY+4okKK8adHlOeidx171CZTVaJ07nM2ONGmqbcckHU6EKAKEgEjJxjbIzUcOth3mQnCoIAQMLwAMZJGR3rROxUUjkx6NcPiUOPBTgVrSVE+UjG5753rXSLhNg8KsM/iji46k6Usx3MY1AAhQGw64360SpkplZJYdiSGmspkFbJUQk/N7DPUjHpWaflSHik6VpW3uFjqcH179qIVQmqBj3GS9Gcjoc5ZczzdS8at/+fepabvIt0VyO8sqBkJd0ajvtjBPuOtbV6JTLSJclOWt1bKFF5CipJbTnT6kKBz/amGbqpanJEhAZSVbJ04So+mKX/qNukWUecwpKlKWlAz+c2v8AkB6Hbcjp0qscnsqylEaOlGMahlKv1Jqk3Q7VCPXBtdtGGWUJSr+VIz91dftT70hhGplSYupTQ3CydOd/XrQ7SJYyp0tKbef5KkrRqASoZI6Z8pyPvUAT1quhSGkBAPlQgqSk++TvQtiJ8uSuHaXSlqO8FYSkAqVpJ3yN+vbfNV8Nb6r6I7zA5qfMtK1YSABnc9BtTVVYdsKdJUm7KWHnEBZ1IQVKPLT2Ge4xsKFqQ25JjPMJX8OCS4tIydWdiBmn6CrPzcQxMiozPA+GkgONS04AI6aTvsCehPrmleYtfwKo03WEvHXlCiSg9Rjv9fXJr8Zban9h3LrZGLUFn4VhlkJmFoNsLaQdznG+dlHJ61JfLLr5LjyIqIyjzGWlYyk5O4P9fpSlzbt9glRHMuKbjqjS3WFIawlWnUFg7emMYIGMfr2bNzfjXJ1a7iJ2vQlDjiCAfQgAYwDt3GK0jF1TXok3jV2VaXmJzbraH0vAgNvhKQMHqMD1I39aqr1xJIYvEd5iapL+dQeY1A6t9O+dtvTuftWcZyklG/yauo7PVbB4qKVZmmllanShLbDTjgOCABnAA6kHr69d63nDfF9vnRJargExZK1BDSjI8iepyBjcqwQM+le/4f6rm/qFDL+0ycYtWNS+PkmyymY8ZCVMYMVx5QBeBJKk4PUjBxjPr0r59bfmS4ibgww41OkSFqalB/C2SSdRPQacp+vpnO8+b5i8mmQlTJ904kai+FgjOsJi3NolptTBSlhSCk+QoIzk56knYYwM14jcLk5NmOqkucw6hqUkZGwOwI9yT/zfDHJT+5Il9kJ5l74hoJ/7KslhKFHTqwMgZ+tWrL7EG3cxEZt6QsltTqV5WNs40k9NsbY7ffoaTjoSMvMkuzpKnzjIXq1Yxt7D+3tV00245Jw21mVIycqSdRGOo/Q9Cem9acVxv4I9l1cXrjaWWHWyZkMYStp0cxOpPlCCehAyR+1T3baiTboEiVPbhoKx+Q2CpefL5fUadRAyew+tcikqTSKZ6rwRxe9wDIYiW2aFRZEhIkt83mZVuNyAUpA33G9fWqePOH2LRBuCpUNQkuFp1lwqzEXsRr8mFJVnGUk47gZFer4vmOGNxn/YqMUzbRJXMfQ+hqDJaWklTYGWhn6AEDocVO3jyXJ8MxIpbBc5XJJTvtgBSTk/fPvX00Z8oqn2FMjl5V1hJkLUyl5aAo6UY0kE5wBsM5/YU0uO8IzS3XnV5yhJUk6QEjtn0zVp1piq9lRNSuMpAS2HdTqdOkE49AD71oZD8kvrVywpZTj8zBJOPaonNUrGikjLU9enGpC1xx0d0pzj9x2p8MxmJbjcUrcITrC3AAAc+3T9TW3LivwT1svV25d0W62JTMRLeCpfmKWx7nfr+5q4uViFptrjsm6MJjNIwhPKw48o7AJSFd8dTisOeqSNq9mNYekF9BjMNMNeZSlkdQnc53J6f871buSY3+HzGMmQ468eYGkthLIOMbbnP3ArRyXZBRz3W0RUsxrYmO4VgKcKCdStyACT+w9KVDip9zYYbZEbR5XXQSdR23OpQA3+lbKSatke6RKfslyE3Ru+sp8uFhQVgE/yk+lV0Kc4zOcjXGK+l8aS2tSTloe6SMkH2x96ItSjoKcWX8a9Q3Jsgus/iDwSAy6pzK8526kbY26VGfMaGxcroIhS8UFIQAC2hSh1OQc1CtOvk000ZRL7b0TlqeS2tTZX1yN98bdDt0q1jQHYtsTJblNu81rypSMkZI3/AODvWzkkqMdPZLlTGpKQkWiNb2Rp1ELcUpeBuclRxv6Y7UyxOS7NVDdjMusAeR10KOg9ex7/AErJSRXsnPuR4l+Yek21tyIhgo0FwJK1Y8qsDfbbqKumQ+YjEZ5VuiMDBSWOU+4BsrB0qyNsDJ+nUGnJppDUSpurkdFxnwG3WoqdKVICEq0udyT5l4PbrVfarvPivyW7ZISoqZCVnk8zATk9CDjvviil0Tez0SHckSrJGaisxpkmTHKnYrlvbQSoEAYOnzDr1IqMiFoeTIYiuWlYjlyQ83gNgFWFY0pGlONQ7g1i5OL/AAdCUX2UMmWl26i3W0Kktr+TyZKtsnYZ9P2qpuEl6KzLjLfaafbQCtvOSok9B779O1JRcnsylsv7OniLnWy7N2CXJRFZ0tr+DKmZAI2Hy+Y+b3PTpiozky/SLo6u4WFLHl5a23I3wqUAkbhI0DV6ZrWocrsL10adx/hplKk2qyjmpg6wtcpTy3V5ASDpwB1z0qnZYuLlnafuzSbZCcyUvqbSRsehAORUtvtmiTf2oVz/AA+xY7uW5Td1dIAbeQ0pPJONidwNz/w9KgcMyEKRAjOhb8t+WvnhckoAaSjY+Y6c5Ox74xSXNp2N8U0JJtNqg3N5xy7vllDmUs/B6l6z1SQHMY67g1DTPedtriHYjKiyNYb1qJG222cdu9aWpUZU46KNi4yV8RQ0yEOrYK/zWGV4IHbGT27VZRrkhd6Uywp1mI66QZL7Y1f/ALY6jPUb9a0a1olbJ6UMNQi67KL76lFTQaCkthIOPNqwQT1rFquK0y5SlobcYU6VHbVg+gJ3x96yxuMm6HLQz8chM5ElvogkcoZwAfT9anN2p2TcW+Rqc0+dxGMqSPpXTfHshK9IvPjFlRiaG2kIVq2R5iMAdu+c9a0Ui4sJ4ZjMRo3LayFrLpAWojrgajXJJWtGy7MzLv0hpC3eSSX1alkO7r7Z8vepltlt3JkpSwqK2lClvOvKwEH2PVW3tT4fbpk8rlRPU6w5Dhu89QS05/04CglK+nr/AH9ajuzFxtdvak/CpdSouKU6hSVAkDBITnPT96Sb6ZerKxchkNqU6FzQlKQkFW3Xr+4wKs7ncLb+CFxMOS0ogJU6uUXMnOM6cDfr+tL73VEpLZZJYkBu1RYDin47rZS26pAQcEknOScb5+wrP34KeiRF/GR0RWVeYtaQsZ9QACTscZ9O1aQluxtXEobc/Jau5XBUhL6E5UXVJwAep81W8+2XK5LhaY7uVIAK+XkuKPyhOOucjAGa6OSjKzJRbVBPxbjZrcI5iKEl0FDjAOHUEdlIzqHY7gftVOtMwTFJlpEVSUf9txB6+w/vQprsTjJIlR5sflxI7EbmSXjpecQ/ud+mCMY2/wB6s1xoEyAJiA8PztC0pUNI/wBP96q32NJNFdciGOGW+Sw64lT3nWc6e+BVW6SqG2Wm1KfKfOnsD/z7VpF6slosWo019xEOTqZVqCVBSN0DHt75qxhvrt7LohutvOkFKkFgLUeuMBXQj1rJtdFJHMTUR2m9YU8GwctycKQsnGemCD6ZqBNl2/zuNLlIBUVKSNPn32INTuwpJbK524K0KaafU6wQkL3wkd6canJaddjRncNYz5cHXV9IlM/MuZMbakOaSW8N6nAp7OSOgSNxjfJHttQIurcqXFZdHOWnK3QSnBUNwAo9uu+SewHr+Txi6tm1k6VcHGENNICHA4EqW5HSpWjfOk7dRt0H33plUmWmzu6ImtbhGS4oZKdwcZxgdeoqVxopsjR7lBbacfdcyVpKWktICVBRGCSCNxt09cU3AeYdlCCp0sajo1uIO2T09jjf/m2ii1Yr+DaNSVRGkqdmh8BtWmUWyMbbJOBnGoAYI7Vn3prka863Ybi2paDl0JCtBH+XH3HQe1cyS96NWy2tskoQl9suJUlSslwgLR7bj2P61qE3uQxZnFOIakt8wL0k6FJOT82cbnJ6e21ccovmUuiuVxWwv4Npxt3ShWtTvdGR1GNyPv029asG3Jsm23h20zUPra0rU9zg0oJKyMBJ6qwdWOuOmcV14sNzSbIbTMxfbM9+BqS8ythS8yHE9G0J1KCcHJz/ADb/APqGawi4j7ltRyogBUMJKQdSsnO+3ft9K9qop8UZtHNOEo0vqDTzLyihbqvlUMYSE9CCRjbpnfYUrKG3iy4ZTTr0lw6mUpP5WVHJ9AMDP0NarWiKGb1bH25j70OSmY28s4UhGM53xgdDnt2qyTbZlktrsiQw1KejjCS6yXG1ep9MJwRuOuanJNKVfIqZm2ZnxUx1bpIWogpS2dKVHPQDoP7Vv5QfkcGpdW0w2GF8wpxlRJAJKlnrvgaem2KhpKmC2jOW+8Ki3Y89LbjQVqOgbEHY46/8Femx76J8KbDdb+GiSY5T5tyBkLCgr18oG4PU9OtJwd8kJPR9Vfw7xyw7P/xpEubloeaSmByJXwxSQSNaQWnMpOAMbH6jOPpNDNlh8RtsmC+9bC/lInL0KUnPylScD2JGPtX03j/VxYlFr8nVFRa2baFwrwTGKYk12e1JCyj/AKZonBSo7ZI3G21Wt/s/BEeyqeku3aQhuMmQvmpH/bJATgBQIzqAO5PfFdXLI5F1GiGeAOGpba1SpS7CnmJMZhiapSB5RklS21kEnPTO2OlZu4cKcIw/i5Ld7nvKjLBWzzAySD1wt5tAz7YJpqbfaszcIrZAVZeGX1yVRvxgKeSnkvrdaWEZHyqCUFSsHA7Vdr8PG41uZSzcYnxKxr0KdVrcAH+XGRv37VTfp+xcEzDSrXxE089am05ivyBzENqSguEdwknUQB7ZG9et23w6usWA3dnW7fc5biMOJeQt9TOBhJTjqe3XasptQqjSEU+zz2ai+ouaI07h9t9eoKDDcBIWpKew5Y1j3IOd60ERhm5tKMvhziC3FpxTrTRdcbSkdsLdxv227HvWtUrTB8X0fRlo8NeCmPDey3JHDDNwmvw0vOqmPKfXrKRqyQrGc7HAArJX+FZrRwRfrxC4JsanYEJ1xGqBkEoBO+DnqN96iK5U+Q3UfR8Zjje/szviocpcNxLxfbabILaCCVaQkg5T7HIxU/gJxfEvH15ExtxLTsZchxEPDaQS4nqSDhGCRj6dK7+CjjbRjdyo3zEHgGPbJkpyFNkTghSmi1OSG28JOnGCD2Ock9R98oLRPmcMLMSQHGpISoIIKlLJGSPKCTjHU/2rixzyTbc/7FzhFJUQBwNxm3b0yVcPyFMAYykpURj2BzXp3BMO6TbcmBIhwYLTQSlwTmVKdwCCDg5OMg4Gw2rqytcbTMcad0QbnwR8Td1tW+5JW22FfELUEFsKSdwEDCk4x7/WqpcOLDsZWb7EVGCwyXnWlI85GSG/KTp75OD7dqwS5qktmjXF2aCIvgx+0R4HxdigjmYkT1yZLrunJ8/LKggkZ6AenvSXa8QLpGbsltnRY8NqSUsRS8jmyBgaVK5QKTnruo7539Vxy8laHcSoufClyftfxqUWt9m3KSqRplDmqSd9BSk7pIBxjB3O+1QYDcaNIluN2SQhT7WgfDuEJGR31gk9zj0p/VtVYuP4I0KBfHJDLESBJ5IVlbxCtLWSPMcdB9KGc6u08XNfigFyWUJTzQpzS0NWPMCkagDnYZ/XaiL932SrXZsGtA+Hk22PFlKUdYZguqDrozujCkggkE4wD096du/+D7ZxPHuNw4ZeMwoS+6w7NIIcG+lSCnrvvnr6VEHJL7WbSr2iiu/G1yu1zlIgLTb42dMYmQo8vB7Y2BxtkACqqFYkzpsubN+KlurGpDuSlJUe5zurvtWn2w/kji51ZxVGszhVESmS+sAFDqgobHcZOPTtUi53y9XWGhmRAS1Maf5sZDKAdScEhOy8AAHpg01t8htcVRiGnXJFuvswKSjlNpwnoTlWNgNjiryz2ifNuSXZElFohga35EnUeWMb+VIKum/St3SRh3RqpsKyWWGH5Dsa6HnpTzHmX2wdXQ6UrSVJ65JHbFefX1956/vrjNsMNKZHMbjqUlOCc/KT7DYVlCSu2VJUiNYZbMW+lyRJdjFtGpJYVpURncA+426HrUxSIZaIW+vkklSQ5jO+enp9aJymnpExS4kN64rTK82uQhQ/zlWANt6r2hImuOpYiqkqQStQ2A0/XatYJJWQ9kkw25N2+FivJYaS0Flb6CnzbZGRnudj7VolvrtwQ5FkMSXnGyjLTOCkZ6EkE/fNDdqi4pok2e2RJFokXe43HkRYqwXWkNLUXATgHUBgDVkfbpVJdbmxJbW5EU6OWooUkv8AMTv0UBoTgYHff6VKduipWkVLbjDci26FokuuPjnMuLUEgHHlJ299wfvWruTlufsohw4US3y0EOOLbcU4VpJ041qWcAYzj3pS5JpomPGtjibrZhGs8B1rU5DUVv6dyTtqx64x9Kqb66qfe5KIFvLcRkn85SVFQQTgFXYDcdqFKSlsb6pFPElyi5JYjvqSdISlYyCE7j9MVppEhCeGYbJWFyQkeUk7HJJIPQ9c/eiU0tUTHoWNcn4/4c5CKS+3IGzjiwkpJwQd9u5ztUXiCcb/AHH4mMWVOpSEuJS4s6iD3K1E9/WnDSsO0U0ppTEJa8KMpYy8gDyo+hyc/t/erq1zI794gIZeZgKjYcckgqRggdQBuc43ABquVoEqZaSeJG3ONfyQ5cICEhL6F5OokbjX8wGe+3Sqe9yo9xltjK4sVlBCcrW6U47BXX6A1KSjJUW9qinQG/iYs0XNtaU/mKQkK1p0nGnGMZP1I33Na9hdpkcIpXw/IeTcM86XDlP6sgHTn5AM+2o5BrVybWjNaRW2q5MGcGrg4pqKCdSEtJWcnthW33qtuKWUXV9yM68mMEkIDiRqORjcAkY61EJNPY+0VzF8ce4gLkh4oCWyhJKsDb5Rt/f1qQxd1W5ZlRkKaK/ISUBYVvk+1ayTToSYzOuD4fcbiytWvzgjyEH6ZO/0NBbZEmXaUMTGy+GVaW9aySlOc4wDv1pXUb9iW2ORksXK8OsNoZjBOBleoavcBIJP2FGG8zHIbPLXkflKQdlY6YJwf71PJvTBL2fnJLXDasbQjuCO6sFLSwSkZztnIOOvUbHBBrCNG6JL7jdvlllpQcU6psKDYJJJKSN89evY1+Z4+nbNJdmvNxZtrLbTUdyRcHUlS2+WQGk9SdJxuP8AemZLPEU1cG6Nxi+hT/KSMFK15xhQG2R6bbZ3rGKjF3L2Pb6MIX5dsucxmQkKUhJ1DAUE5/mHv9KsbNdAbswFtKfa5gW4oDdScbjvg+9drVxsz6Zfi6SIq+Q7DUmMpxXLS4CSd9tu42B6bitvbLgtyFHfjqKXAoqUknSE9hjA/wCbdK87NjTVm0W7HHX7TDltufGcuSnCg3HSCXAAM5O4GDjfGT61Fk3ViXES1HXpabUdayC62o+u+MfN3BIz13xXNCMntopujN22VAbu7yLtIddhF7Wp6HskaCfKEkYUMnp6dK9Iu1z4elcXuTeH+GvwiwvMNtIElTiUrUlAGd/UAbA49z1r05SUcVLsz0OSrrAKm/xN9NwjsxghRPUqKiNIQPm+YbkgjSCdyDVLJbiOcUPFt78NQ0nUMNnJQEhQ3xg9O6Qc+tc2KU4y5FMw/ELSVXZVwZYQ0y6sk43ABxuoY7HPSoVuccbS87a1ON6GlF9eCDpKtPUdARgdt9u9ezGTlTM0XsO7CNeFKu6HyXyha3AgOLWoOBYV5two46j6YwTVRxDczcbm+iEl+M0p1YQ044R5dRUSU5IGcAlOTgjqaudSq1tAytNtQ3YGyZaGpDzwCFKP5bjZTkqJHQpOBj37YrYQHudwkbdEWnUhwOrPMSvIBKSUoUQSTqGEgHYEkdxEo1Q46M46+IgkoEdsqcUhCdfkITg7+nXbJr2Dww4hsv8AjVx658MNyZaXQ/ARCHMHOBQQ0WVkhSDg5I3Go7EYFdGOUYtOQotKXR9bWjx/vljXEnWubbm/hl5kG2JSHHk5wpadGMI1JyegCU4HUg7Cb403nizjuy3my8bXGxBGtq5tTUrWy/5UlDiEJWUqKla0br7Dfcmu+U+Wr79nXyT6RvuJfFDjC18QWlkXG4sQS2kvpdWU/EAq32SpQG2NgokVsWZLKeKIt8gSXJkpCi8huTFePLIydfm0jY4wQfSvWaUIp/JKds0b3FUIvld7tkNN1UlJwla1OaSCQc8zpgHp09utY24O8POQn5LykedRcU2qBzEg5AAALnXB6n1ohyX8BKivXPgKYgJgwnYRU6EplIeSyVE5OQQPLskjzav3poTFW9bjrd1hMy3GzhacyHMY2ShZRt36Kx1NS5Ts0ShRQQrhDjXh1ydHlT1krTp+JQEJJyMhOkjO9WAutgU6SYUmG2Y+hClYdOrOAsYI9D6Gpm8snoqP0ktgv8UQLCY0jlLVyG9LLq31srwo75CVZJOO5NTYnjFbIr8NX+HYl1KHM5lOrXqyd1K1DqO30rKsvbYSlj9I1/8Aj2Nfb65MkzrdbA8QlJgREZAyQPMpQV698frV3ceHrVC8DeLXrfIuRQqE/JUFqSlJVox/ITlJ2JBJFTGTjkVvui204UkfHrC3FKcGvH5a8f8A/Jq/4AWhF8urjlzFuQiCVHKFKL3mT5Bp6E+p22r3pv8Ay2edHckU7rp5Ssqz5fX2Ne1cMRrt/h20OLW+pBiB1gma6nWEpBS0AhQwMZx0x671i5RjHZs029DfFUu9rFtt066zVMvuhAacdzpOrSckHK8EZwo4r0ixWhm2RYqXZMh19LWlD6yhCgP8vzH/AErny5PtXFCxw39wlxmRLZb/AIqEorL8gpeStWrWpQIJOkjfp3ryS5cUcOT7IxZE2ZTKeeHXX5UolppSkhKlIS2kKzsNyVDH8pO9GJztHQ4R4Ofpf+SLCttilWMNwIr8x55RUrCtbreNsYSkeU7HcVbWjg2xxVGVeHZDSkK1Kjl1SFJRjfIDSv8A+w61o/ImpcWjjeNS6NvDukSBxBAYUymNZW086P8AiIVowpAKVaRjG4I1Db3xVQ9OkS7jPuM+43CRBSo8hTF3WyGQSSQG15VjdOAlPY4zXHxXNujpSlxVszsu9qj2ZaoVzubUlx90B56QNKmhqUkBWEryPy89utUdm4xSxIu6bjBavUqQhtIcuQL5b051KSVHY4IAGPT032cVwdaZhKXGW9l3BuiLzeoc27sK/D2joDdsfjxCQD5RpOnbqM4J2r2GT4i8LWrhhw2ewSbfMCNLElYYkKbUcBWVc0Ek4qfpypUzVST2zEM8UWjiLiu3Wu8tCJa3pWuTcXG2zLeA3GpwhON9gAds4ya1Nz8NLQ7IiSrPAvL1sW2lTrX4Q4Hl5JxoWpITukdRnv1xU5FJSRUZWjzdnht+ZdWLeiw3K33MlIWqUvQlDeCkuLQUJKU5B3Kv1rAcUlNmvy7Wl9qWlhWnnMu6krIAGRjPf+tb4+V0YzfsZaiuR/D1V9QCtLz/ACgQ2oJz1056E7/71orndLmrhYfH2Bu1tSoyVRpPLP5qSQQoK6Z2xt2O9W37sz6RlVvynrgpXxgShZwEFQUpagNgMHJOT39a1tsu1xtrBhMR20SZWzTylKS4FdknfG2TjIFYSlC0mC5dlBc4N4jhcqTGJTHUFrLbHkbSSANRxgZO2PWpcu33+82yFJat0t8SWw4zojqy71G3qNjuPQ0LgkpfA6lVEV+xXaI+gSGHGVL8iohSQ6TjOzfzY/8AVjGx3qZbpjti0SrK7MakJwpwlQWk7YO2jp9zVufLSQkqY3dJsmTLuL7zSlsOlJUHMJKSPToNz7elZMOyVtuEuBtvoUk+Ye2K0g00DbskIfet0F1qRlxEjQpspeStKQCThSd89ehxWr4fsV9RDl3BFhfmKdGlnnMYRtufIcZyD17VUpJL4sSts0sC1raSzc+IuGZdmiNNEuSWrceRq1AIwo40k7jdXXp1rNrfivcQT7i02XEtPDkpdGklOSQCE+m3eud5K2XSSLdL0e1WhmSGnGLktZKwlDaEpHZQBBUrb3TXn6Zry5sq5Kujrs1zPMQ4k+YknOTqOcddxV45co7E0CmQ80w3IiBbchWUuFKtljbfHXvW7ffU7ZnnVOJZCUpSVJKtTp2O++k53+lE2q2NXRRi5tNJZUWw/pWNlAYUc5xj/WtFeJFgEyM4zETAXuXi2EJ1bbboAGQQOx61hBtISZRO8Qwrky41LW6tbOAC44FJCPYnftWfnvRo6CuGhLKVklQG+3YDO/71pGLUq9D7QtmdYTFuRUs63Y+pBKdwpOVfpjb71N/xJJjeHAQw+lsvjlOtBAGep1Zx17GumuUiPRm4StTCUpUtx/SeUls50jOTn0rRi2pjSm089T6FtBYlxUEqBI+Upz67Z+lXKVCUdWWi0WFm0yORe3Xbh5Ex4y4gQl0EHXrUV+U5xjGagRbmiHNMZ8IcwFIdTzFHAPUDtXLPk9l6Wytu8php+OtCEBCk6EtoGNHfIyP+ZNUYnLRPQ7yXvgku5WgEgehx74rpjbp+jNvYk2/JkSkw4yF/CtrPKSsDO/rgCpsBbcSezPQ8pcjOUgEgI98ggg053COtivZPcgtAB9+SI4cypBQSrp/KB6nOd/SrNUma7whHQ2JS0xlAIeSSSG8+pJA64wNum3rkndNo0Sp6Pyam3STCnSbLMLcptmSdRZWdKiNvKT2reWq9Ny2g1Cltx0ICAoJJ8xA76uvfY9f3r83lG4JopfbJosH0wJSUPPAuyWk4U84FEhRyNjuNwM4ORtmo6Zj8VhLYlJixCMR0xpWeYSQVFQT12yMZyPTANYRV6YzDyLMZd8dcZfS7rcKUNrSsp2J2zuR3PTtV1a7ZZ7XPekypa2ZUfdTbQ1JTknKcnHUHbfsa7JSfCl2Zpb2UV44kYn3BLbTTiW0DSlTrpXgZztttvn1pyHdFIWG0qKSkAJXrzp3GDjHptQsdQSYXsF+8XJM8RYktlAKSVqDWlQxnqVex+lR4c95+QlmWpT7JHVQ1KG+Mb9Op/WhY4qOuwt2enQIkd6M1bG0qahFClOIWjSpKd/UHfOd8+nqANLybXGj81uBrfQgIQAAkI2/m7kAY6DbFeRNycuzaKVFBOWGeF3n+QrkIKuYyUow26Vfygg7b5GN9/qTm7fdhDlNykAOuuILHLfGUJOAk5BO/XoQeld2JcombdM1Dem4cEqjutBuW6HEurTGQTlKdOFHOyQcEAb+XOM4qHY7DLVKuSvj3EuBsNaIxyHyspIQRjoTkkHsDtXT9ZqNV0VW1Rc3s2+yMT0R4MZvmgpbWEK8isbb+vuNsnfODXnc9LEHjJbd1QpmK+A4v4VOdOdyE5wMZGM9uu/SjDmlJ1ImRXPToi5K41u8kVJOgOkZAV2J6E9N8DOO1XjVzhMspQ0tx1lsamVclCPrkEK/zEbnp9a7pO1ozRnpciW/NWtKllpx3WlOeuD+9WdtlPszStGUK+cctJBSSeufqcfcU6uNIR7/wnxVeZEC3xE8QqZagRVRmYjjx5bSVKwo8vGlOAt3fGcrVt6/UEHwW4kmW9KXIq0pkxkoMmO3zQoYBSU4Iykgd8bgEA752wQWWLhJ7OqNy2z1a3cOcX2bhqBbRAlT0Qre2xH+Kj4QhxPVzSMjO1RVWnxDft7aXLPIeQlKy3h5O+rf5dW3Q9q+gxQiqt9Gk5V0OuyLrAnNC5RnoEwspBbeOF6NSQBkHocH60L/E7qeJI9ucDDbZYS4tx0uOKVlsK9/X06CtljU3XwHLikyDdLjYQttx7iRdy5ai4GWY7raQrGAMq0kjc4OB+9V8a6q4q4zt9utVkUG1PJThlorWElXfY9tgdhufrXTwfG36M1K5UiXxnBm+H/ETUWcZDdzkMqVyXEBCWm1AoSQO53PYD0rIz+Knp/BzdpfbQwlpYU25y9SlEklW+duo2wenbfPFG8iUzaajGXGzGPS1LyFOlZxgknOogelV65QS4obhYG9dcY3o5W9ktu5PMpShCiVnqc9adjXZS5qEOv6GjgKIVp2PXfHT60fSXKw5tHolw4eXZbnBbk4PxzGuMUP6krQtGUq+QbKCkkeoIPehsvDTrV0fdfeVFjt6krC0LSV+XPUJO2SPrinPPGMQUd2WMrhGIiN+VxBHccWg6EiO5jp3VjYds16VAvDMPhuyQwmK5Ihxww3ypyiXCEaVKUnRsMHuR079K45z+pFUdSVbZroRttzahyuIJdjVIbJejI/DFL0gK3Kl85OMnp5Tv6VYtxLQtkyI062wbg8kjLrilhlWMkBtTmkEewFZKTemD10Vd5tT07gEPqvkcBCkvFLLSdYVnA8ur3zWTu/hdaoC7a6qbc2nnyEuLfiIbYSQnrnUpSsnOAkb7DaujHk4NUDb4OJo+GuRw5Zpb7t3uD+Hy2kw1qjKKUHvkHrnsdqgXtKLvbWky72/bpU5j4lxYiKlrUgqO61J3O4Hyjoncb1bhxlzowUuejJxLHbp3Ck1g3RbKGo6lqWbb+YNSd1OFKs7AbZJwOmN6imdaoXwa4jy7tHYfSp0LZTh4gK+VBUdSckdcfSsFk5PfydPqijkp4h40vYlqjxmIzQ5epLaW0oT3GwJJx3Ocdq9Pt/AHh4plSEqv8m6JAQ6lpxtSXVHCsAcvIwD29umMnXJnUEowVmCxc3b0afia4+HPCPBsGHE4Nkz7g0hAdblSFxwhJJyQrUVKJUTgY2zue1eYzbszxTBW1Y+DpVi+HUFPMfFvSTKQVpGkBQ6gZ7Hr6ClBZWuTYNxTo2z/iVwizbLpGnWviKFfXHPylQoTDqI2DuCgvJJI6dE+4pmX4tOXHh9lifxNero8wR8Gi4WDlpZAxgYQtzGMdu21EMLiqkk/wC4nJPp0YWJxPxXJjzZ7fh7Z+NYbihzpd1iPqcVvpGktvIURkdN96z3EcR28tsSzwo3wlcealpNtt8d5LOnB1LPOWtZVnH82Bv0rqcFB3GX9jK+SpoYjcMcTS7J8Cw0ialhQWltlYWtrIx29cftWui8UcT2/hKLw/doMSQ1bklltuVGRrShWCUkgaiCMApJ375Fc8540tlbSMO+78TfpE0Mw7atx5R/KaZaDZP8rbYKcDpvtjferDiGzP2a1QA/OaUmUsKS43jUtv8AmVj6ehxWTUXNNiVpWYZxbrrlyjc9b6AtOjlqKgrGcKPqAP61rLPcp1pssZli8OFDSSkIiyi2BqOrBCSFHc/0Fb5GlHikON3ZPjOQ1SnHL9fn18QuKwku6sNDOwJwSokYx0pH7gzK0R7e25HQNKnnlkKKB5QVBOdgCT33z2qYtpu1SHV9EqCxLde/FGnubHirPJefQhZccSM/IchQ6dQR1FYqzXVdx4/lS7jIQ/Lekh5S34wcQo6sqJA32G+Ej+lPGqi5CaadM2N3iyOJLqtdstUGSpkqyq3xnk5SP53ArIGPbGM9KC43DimZwolTl1fdQ/mM0wl0oaVnY484ySEkYKcem9YpxlTqy9roqGua1wwiwKUl+XzufpVHwtOw8oUCSU5Gdsdau4sCSxeLa3HnxzI5vNkvSWCtCNJBGpCQrVnpjcH6UScW6aJr5PQOIb3CblR/h2bNflrVhrFrSXCdidi2nTvnvj6V5vxsm2JgRLnbYseLIUgia3GhclKFkbD5iD3GwT0og6lSZpKnEiWtyAhq0zX57MlSYwcdayUcojbSSpO52z5dQ3HXpVxNfaaZHw8YJQ4jKCXku8xJ79iAPXA371nkm2mi0o8G0ZSYgN293kNcpw7gpOAVbe9VRF5fsxkTJRkREuFCwtRyhYHT/aujC04b7OWn6KEuobnvaUhxQSQU6sZ/4atn+IZaFvSWyiMtwJHKZTpQgDOwFdLXLQJ/BrbRc5nDzKeJ7LclW91cRSHXHGmiMkpygDUoknbGUjIz6Vm79MXebu9cn5okuOOla1oaCQpR3Jxttv0xUJcXySK9UQ1zGPipcsoS4+lGAE+UI2xnA2+1V7t5kzuGxFbSoqTgYTk7jbGOnpWkYt7Zk3obXLebC1SoiWyoAHmpIO25xn123rWWRLtzvDjbccjkxNCDpUoKTjOgac5OTSkq96KXwPSJv4Y23Hm4WwsgBCkBLreM9CR5ahm1qut4VHtc5qOtSFL5L2fbOD6/pXPGXFXLoqm9GZcgS7XLuC3Xm9TSVJCUqwT749KZt8P4m2IefcW24o+QAgfeuqeVRVoy47pll+ISostkxnWlIaeLhbUxrQTgA6gcjGwr0PLVwZcmOJit8xtK2G2I7TadWP5mxhPp8vrvWUp0ro2SbdH5Z8RcFWu3eELl/Xdz+ONXDlvRHQoc1tWcOIynffsSNvXtg7XcAw+rSFFBSMoQACojA9P3r86w5Hmxtv5FNKMjbx5WiySWGZhERSCtBedJGSMYO2QRqxt137VGdZSjg3U9cUSQlwLaYaJJBJ3KjgYOw9adJPSFejHOzH2mnUMrUpuUMKK0g4OQdj6/v+tRvjJzw5anVEuYBwd142GfWupJVZkNusPfFYQ6HHkp3KVdNun9qjsPutPjSdKj0zVaYBvXJz4xvJSp1snzhI3zU6HLfMxh1CtLiFhScDJJzt+9Jx0Fns1lmp+KjmW84q4fCBaYoSTrKjlJKgO+2wH3HWmJt3xbyWo7IWQVtqCtZHYAnUc9ANxsdiK8r6f3G96K5m7ruMpljloDjo5S0N7HIG5Oe426bfSnhZZ8csMNxUpCVq/L0p1uFKdQKsHoTjfbtjNbfbi0T2SJ8t6BYokFyYVrbQlMppsJQ60QMkaiPMBg4O/U56irtF0eZ4klSX1vSUlTa0uiNpMdIQnCwpWCo4BATgJJxg74rSKi1T9lKxi4cQMpkuS7rclTCthIEVQyVJPQDCcAbnoT3zis/d0NX+Q/It7D7ktoklD7wK0pSP8AKfMQACSQMCsYxcJqS6Je9Dls4Xiw25RusYiYPMw08FoQ4ArScEDfGU9iOufSru4cNpbiiDBeTGnhSgoKeSpBGBqAWk4A2PY56CtfryjK/Q+KoKHwS+5w862wvmPB5SXHBg46YAHUfzZG5OOlReXcuG3Y9zS2HpKmnAlSBkqSUHJcSRujcAgjBAweta4/IUp8QceK2aTgq82S38aOPT3uRbXitTrLcVLi/MACgairKQCe4J3wcmv0a4K/iK4SlcKx4tntvwjEZKWA0hfLKRoOopGFYAVjHfHevUwv/Mr2zohKCjVnpds8arbcOHbmt5pLTzC1htGvzKSGxpPTfKsjJx96i8HeMMOXbVQrjbnJD7ISkyQ6khQJI8xOP77V7EbgpWujRpSrZm/ETjKzROIlJYs0S4TXI+tyS6AVIUQUpwU+gH9K8f4euNsER6ZJfU7dUPcmNGQyVl1LiFJJzgjY4GOo1DGd8ejCfPGpw90c3FxlUi1d4Tvk2Y4LfbnFKUgqWl1rl6fN2KwkZ36DfrWrYn+Ndisv4TZefBgpTs3DUwEkjv5e/v61nPyMDlxm6NoYcvHlGOmee3Xh/wAQJ01cq7Qbnc5pQAHJCi+5vuBkkn7VVucM8VFlPMsFya21FPwaz/ams2B9SRLx5V2iie4e4mbc81hubZJz5oLgz+1U86PMiOtpmxX4khSc6X2ynI9ga7YTg3po55RmttEdqQCrByolOOvSrFhEZtCXF4fWobIJ8o79f1ona6ISTez0zgSdbbp4ocO2XiniJ2z2JL5DUstc5MVSh5fLkeXVpzuBjJNfT134D4Mtcn4JzjhhlxDJDKX2VNc89SsgEN5Psvf3rysiknVHbHj7POH0wLK8Zdpfg3RvlEuomNoSkH5f+04o53ye/X2rLWrjoi23Nm6Wu2LU27+Qpq2tIkFKsg6VpAPlPQ79dqmMZptey5ThSSLJ3jG1swXZCJSkqbQG221OOqUTqySPMO3U7H+lbOLLjToxkNSwpsh5QKkoBGUDpqJPTfp9qzacVbEqZTzZLSOJGozTQcZf5XMdbCNJw2D1Sjbr1/pUPD95494ctsBv4iY/c1pbbDnLCjlBG5Ax9f3q8c1y7HOMuPRNkcR2yzzp9qfMZ25JklpXKc5iU9QTrKtBHuDmo0CVOfuMBMNcV2S1FLDLbD4QVoCirBAO5yST2wK7JZIqN+mc0IPlaDlxeKhbXI6I0hthwBD6G0BXMRnJSoA+bO3XPSmYCIduhlqdwvMluA/9O/ynGSyD1GlCcHqalZcUlpo0UZploxxC9bizI5Eq1rddMdpxlxxsIaUSrKzpBWScZ3A9utSbdJ4tnP3uXw88+zPW2EKkpuymXHSVEbFWwGE5xqT2wT0rnjCEcid6NeT4v5M2/A8cYl2dfU/cXHWlaXHV3NDjiDtsSXSdwodfUYp+3WrimFZGuKZa4dynXdlUUGXIeLrK9Yy6ogBAOEnGpe4JG/Su7JLDScWcsYzlLoz7/BUyVDdmxrpC5J0pQH1O61lStI8udiSfQDfrirvgf8E4MvM+88QWqPdW2WgyhDtvTIjqKtWTkLXkDA822CRjfpj/AFOOScE6fRp9DIvuqz0RziO3XDgyfxLaZjhjwmuW02hJbUwlOcIRjcJGrb6VkOEfERu2zb1OlNJXdX2MW1l5lRBWMk6iOg+UncZx1q0m4te0Z67KGd4h32RwlcLXHtjN/uMub8Q7NdgqkOJQAkEIOClAGnGw2GQNsVYcK2yFdeJn036CtTcmO48hmFrY0q1YJ1aFpBBPQJ64+hzywcY3d/gcaky3j8KcG224Jm3fgjjGW68spQX7my+lS8/MEhltZJ9CRUN3hLhbiC2z7hapd0h/DrLKITrLS3gryjZsnzfMNtQ39KylkyKm0mi+C6s3KuFptpkR/iUOvl7AWHfD6JqxjYlbIUT0I6envhu58E3S92eMhidHtdpZlhxMpXCkxBKUHISpKU6dORuD007Ebir+1zT9fzYK+J4Lfbg7eeJZzMtEO5LiSVcuXbbeYzbiMADDYSMAEHGRk53r0HhKweHjcFY4xvz7MxaE5aihDCWCo586lHKjggYKQAe5rSXLpbFFN2yo4zf4R4cetieF5/4pGlrcEhC1pWWACAkpISkHIJ9jUWZwBwraYTd6lcZMJZdUlKOXCcBSVeoOnpk5Iz0OM1neWK17JbUjJ3kyGhBsFhnxro5IcS4VwnFZeWUjGrIA6bYGf1q/PBHGTfDFu+KhvQ3ojinC2uG6oNpBJBKkgj/Mew6+hw3NY4q1bYK2xYFs4nmqXeIlrnTy04pp51DWVLWE7oSkb4wewrT8Lu22LbLijiWDerTdZyuW0U2RS0ISn5SFKfa82d/qBXDCDlNyb6LSknsl3DhizcROQRH4suS47IBLc6CklW+5H56tJIA7du9Yviu1OTuJfwOxqWu0pCP+qXC5aXFDOVq0ZBwNu5ByO1dUZQUr+A4yoqLVwoqRELztyYMWKssq5bawtSgQOhA65G4rYXfhibauAgoWlx9WSVXEh9S2xqGQrBKDgJUOg+uRUZMkHJXq/kqOKTTaMIq0vN21t1fxCickqWA2lQPQDfJ/SvW7DwnwO1Zra2uZdmLvKjB15xifHLaVqQlSgEKb1YSQNtROQd6vm4UoomMUtszznhPwvcmnpdv4juCUKWjXzmoyyOZqKdg6Ouk9cH074dk+DdgU4zHXxq82uUpCY7irOnKiroCEvkD6jP1rd+Q6X2iWO+mes2q0+GfD3Acbgu5cTsTJq0OuOPjhqM8t4K1dCpDqwEg7KDmQU7Ywa8e4uvMWzcbw7HBn2niPhwqSqCuLbozbuNJQA4sNjKgdznI6HrWUJym3a12i2oxiYfiYNzr2UfAItTgQEaVltGCE7lWgAelBw/H4etvwxu1vbuza1KWuIicY6XTkAHmHpsDv0qozlVJmdKUi/uU7gWJGnphcCSFx5DICWJd5W6WXU6hqBABxgjY/5e1eb2WTJ+LUhLhjNt+YKbTnH2/3rWbk8b5kNLkqN/eLHHb4Jtku/wA/4OK5zHo01D7cgvKykcvQhZ5eMg4V5sZ27V56/wAQR498dUzJQl+O4UJVHBw8NwVAn1/vSgnkhSWipVFkoTRdeJY4REy2Egu5YSRjGVE52IHv2oW5E53jfkx4iEuOo5SCI40jHmCgEoI7dh0q0uKp+kKVSdpA3MRlfkCQyuU2ziQmEFJK1E7qVqSN+gwNv1q2t9yeZttp0SFW9cZZSl5lspc0EjAVv5v96yTl1JEtVI/NjjW//jlvZKW9UZh5CFoOkqyoqO5A22yAMAbdK0/h94XRr54TcRcWz0XNx6GjVBj2xTClJAwC66lZ1Jb1LaAUB3J3xX5wpvx/GXyaQjHJN30Z+TwBxqtTdxXZpMNTryFpTIb0ghR+bP8Al3HboRXpkTwlsTrt0XduNYokwYwcfjhrlIU6V6SkKznIPon16DccOf8AUYqF4FyfT/A4Yd/dozqvDK2LiNGDf2rny9LqvzENqSFKKNODuVasHbOxBxjesHdeHJzUwWqR8HHRGWQFspSpwDJG+Ou4PeurxvKeVXJUzOcOPTMxMYmWV3TIbQrmpwlxOCdsdCD7/vWcU4FjCk8xWTsOxr14tNWjAebhOjl4aUo75x0/X71OZts16G5IbQkIB2QlwajjGdv3q3JC9mis0py2wnFNSUONvMhLqVDCm1agcAkewyAd64Nur5WHFpQBs308uCTgf296w0nfyXdlzClx03JCG3VJYSoOJ1HUVL3GANgAe/rjqKmS3JLUllTDpcddQQ+0nOpKCnJTn5caRny+v0rKt7K7RG3dQY65TsVorHKDixkk5B6nYbnfp1qdZZ10uXHUWE1KTFWocgv6vzCkn/MASST/AMFW0qv4Ddk3iGw3SJJYkrS482wvQypDakApT5v5uhBPT1zjO9XFoZW1dHbtMlKdugjKKec2psI8pIIQQD6JB2AyTvgVhzUsdpFNNM0inZKXTLRFZu0lSEsuyD5wnQoEgAhSTk4OfX61luJXG1pEuM6+RsFEJCQpQ9Mdjsdx/rWcINyT9DfRerlXc8Fhi4rdQ+ogspaXr1KTjJJ23AUQRn647427zVvWrUllxpvdIc+fV0BTq226n7ge9a40uWvkmRnWZbbcRtLZxIS55hjYp7Ebfrk/SvQOFr7NY1mHIVHARhbecqJyTlI9Nt8+3WvWxp81sxT2fQHB/GCZcdyBJlly7mOCsKRoDuP5kggZxnGB6V7P4cXSZF4ulRG7bJukeQ2BIbihQcSAdiFjIRv3IOcY719bGUZ4mzpjdo94uVoXxFZVou8OFZbe2xlCIluaMlQHyhx5QSoYG50+m+awrHBlngcUplOCULay+OUl8hvmqBABGMkgbHpv61z4sn28Im0o0+TPXo1waLT4bCXGmQkpCWFKK9QGwxpyQSQdu2elRE3u5C5uN/hwJKyGGkocC3EYHnA37k7Z7dPXyX4WOUnzZ68fOzRiqomvTZzNkkT5jcVDbSnOchklfLCVYxuQSQOu3UHtVSjiKI9bxJZKHEKQpaQUhBIBx0K8j71g/Ah3GWjf/qM3qUTze2eItwt/F7kLiFlLcMjQh11QRy1+6gNx1+mKh3jjqx3ttTD1tivuYwnmuc0HsO30/UV24/0+UZqcZUjnn56cOMo2z57mLQ1xFJDSAhtLqtKAdselWJWsQcKbDalkBKU7Yr6PIutnzy22yIhSzNU2MrA2JSd8V6Q/F4gZ4YakzX5SIiUAx1qXslOMgDKge+23esMriqsUU2NQuO7q5wzItEt4S2HH9SeYMrbUMEqSffGDnNVXxqi9lSirOcDJG31zU8FCTfyaXaLizxY9ylJS/MTGjsEfEPPMrWlGfZI3++K9StN/4Hss8RWH7lLlOEMieFgMgEHIKNsp6H6CvF8lZ5ScYrR6vi/08FzyPfwRpvHZauUtFquDSYrb5ZcMhtSlK64UgIIAGdsnB99tneKHZx4Ytlwcl2yUVqUhmTFKy62B0USVnrtg5zWEMUMVTdpnVn8pyi4pJo8suMa18hpcu4KWtzUQAzuMbBJJOPQ5FW9tvdotXE7F2tVrj28tpUlH5zuQSCAoZUckZx0xXrRnkyYuPSPGgldmutnFTU5Lz6HbfDLLyfI7KkoUdIwlWUsrTjGRgq7dKk3bix202eG9HnpUytaApyHc1v4bCsqGC2jChnpnODvtXL9KLdXv+Do5urNE7crrxf4J3WHCjPTXVyEfCupyrWlas7q3xpOR7DFXkfgt963Q0LhyXprSUKWlFxbJBGTueSMjc52+9VjahBr8jktmottvfctlxtESJGj2vQGbg5nyKUsDUrUojKsAHYjcbY7YWam3xeM7dZbJf590T8Ult+Pa5BlIQDsMKIwCcYO5xtT4fU+2StDjN43yjpkC8S7v/wCIlys9ruv4c7DbJciymW16QCQFKXg7q2yNhtkbGvKbrfL1KuJj3iaTowkNt+VvJJ3wjGfrvT8XB4/1P21Jf7HR5ObN9BcZal/uPRuLLhZ7XKtjWTCltct1K85Uc5SRk9sd9tz7VCtrEu/TcxWJyoLR5a5MWPzDrXsE41Jzn69PWvVjxSczxalJKKPW+GuFfwfh2Y1d13CS2tbbS4ipJZbCXCc+VDhJxjP/AO3TvXoNo4kg2phiba55ZloZQlclqADpBSFls6VDCUk4IwNwfrXl5MqyybXR2rG8en2YDjXxVlGY1d4fEyrpKhzEaIyYqWm9uqj3O+w/X0qi4XamXpd14jSh1ziV+YrL760uIy5goWUlBKTnUM5znGwxvtxjHEvVkcnyv4Lm28QcbwL7KZuF/RNXPaSYr78pwfmAjSc4JOQNOem/atbduMOOlcBzbPMvjjVwdayYjFyU4gsq1BSSvdIAB7qxjbJzisJLHKScHpdl4sj2pIxVsncPWbg+WmRe7c1OcbAdWpta1l0a8LCdJ3AUP5e1evWC8/404XhwuGuGeHb/ACojzaOVFt6lOyQlAP5inmnFZJ1E4HbqN66XTfO6XyZJtaaMp4uQbtYJabrePC6xWqzqWGYyZNteYJ23wpAbTnOff+tfOXxrt54gdhWuwF5uRIKm4FubWoJJz5Ubk4wO+Tt9aULkr5WiZJL0fR1kui+HOE49rj26OjARzA9AQp34kaDytZSFEklY2OMgb7CsbxD4o3I+P9vnLgOsWmAoxVJkNuK5qzhLqljIKlDKhpB2CRRxj8kpyWmZTjLxPny7rbBEkLiKgTXJCHG1K8qwshtQIIOQgAYwQMn1Nel3vxllSeA2Bar9OiXcutl1/wDEJeUZRlTaQF8rcgjdOc+grJYlKmbKfZBR4tIesET4rjO/pUHgJEZ1hhwqCd1aHMasnoMjG+T0qn4d8X507jFuHbnblBjpccfZjSLjrQtIbUpSFhpDeolepRPTBG2RqpTxxcJa6LhPaRfcSeIl64v8R47km4x+GY7VvjtykslxQkDSlatQKsnzKOBqAAA+tVdz8VZVut11bM1PFkeWlaAq4MraS2rdOpI5qldMAHUB7A1ksEcySa+NlvL9PplPGajXTwohS+essxmwouO6jlQKtSSMkqyT6iusvFlhcjurvkFcd4rIiIjNhxLeSNyFLGd87Hr7V3NTl+0xVMrZnFbSbsuDaR8WhKTlb0RDTi1AnGcrV022zjarCz8SSDarY5IsqbuEvFwpbcIc0jZKRp3H/PU1z/TnF8pMaf3Gmtdw8Oj4zNv3+zt2i2jUpaWpDUwtq0/9sjQRqyruNuuDWz4hR/D9bn5cpVtu9xnxmBy25RQww8MjJR8Ny1BwZxhRH09FHNOVRXsbxrbfowXE0Dg6/wDhlJvdqkMtTwlpMW3x5C3V5UQTziokp0pC+h618ySZ8ttZaLxSWPKlGcgbnIHpXdhjybTOaelaNbZHk3kMNvqYgSi6iO2+kaEnUcAr/UDP61NZgXFrxEh2hhDMx4upSthCiQrplORjJ7bVm4uUpcnpCW2mbK8W6HYeIn/x+2SrAth0FSH0a0SCEhSU6VZT0IOMbg+9YDi2/wDDszxKszdvYt4thcAkLRE+GQSVFOVaAFYA82w+xp4IyrTNpNd0aFEaE2hUaPeWJ1yZSTGlxFK5av8A0KKkAq26HHp17VS+LeKl8assXy+XFyE24FLj85wNpCemEA49NsVOP75O1tCTpWbm/wB8g361iHbbvLePLC/h5McLU4ob41BJUAD/AOqmuCDw8zwjNPFUSOlYeVgTtbZSABunCht9e9Q24L8lNJs/Pvhfgp/iPim4X6JwVotSXCYkNxahFBTpaUVLcOFEKIOMnzKA6bV7zagxAlOG7z2EXJHLit2tCkNIkoCXVpZC0KwpoBO+dgFADGRX4z5ss0pOLeorX/ub4HFO67JsaHcY/Fq5fEVqtzNmt8SPcnl24ANMp0DltgqzkHU2TgkgnB32HgfiZereJbnFAivCZeJ7shSlthCEp1kpAGB5hkgkZHlJyc7c/gRcsvD0/f5Ns/Fw5e0eEz+IHnLw5JjynSUvKWh07KVvsTn/AJk0+w3M4kvzSUSHzNkSAEjWVnUs9SD9yTt619pUcOO/g8jctHuPEPgTcWPD+fcJfEji1wmOe8pDAejvLUpIQkFJCkqKVBWVJIwMg718tJKEOEqSAr1Fcf6d5n9XBvjVMvLj+m1vsntyWg8gO8zR30KxitRbLq/FcTI5CX2W2tK9Lp3BG22dx69uua9WSsxTNVa2GrrY346XY8FnWhZS3jCTg775GQf2PbaoN7aioaaECSZTDOA8ELSc4BGdGBkj198Yrjt869F+jOw1uM29xWtlbbiynkLylwYPXtj9ftWgg2hMlxpTD6IjrurGrKkDsUqGc7jO4zmtpS47BIfjWKXJitBSwpxskqCmiltaMgatQGVDp6egzV1wO7Z7Rc50qdrjTWCPhuYzlB3zg5BKTt/WsZyeSDjErp7Fg8VtfiTip0JlEBAUW2wVFOrrvkknsN84FU92feb4flS+YdcuXoRulJSkAKKiPmIJ6EnGysUo43Gf4YN3EZtt1kNXFbbcrnpBJBV8zijjG3fcA9+9TpqzLfcfQGw6hX/2zitnBnzYzvg/8NdLXBhbaBl3VYvKnkOPNIQ5qCAUhtBzqTggdQfTOarnrrPkKklK1vc1ZDjRGpIOe3X07U4pUTZbWvhVMmwomSVuNOuKCgdYShCSds7E77HP0p5iIiz3tTgcU8w29yOclWMg7KwRtkevcVWPMnkpktcT6W8N7hwVF48t7nETsdpmQ3ykR2HlITFSFgFThwcqWkHdPTG+c19zcPM2CBHjN2C0QmIrjOZFyRMLq5BGQNII2GR0z32r38fkRzRcEztx12X8F99Lj5us6CvK8s8lRTpTjGDn+uaz98srd2u6HG5Ed9oqwdV6U1oGB0ToWBvnYY+9XCThK6OiXFmpaR+F21hptC5jBStXNbXzc41aRuU/zBOfQZ714tI8Rm4HjDe1pdkybW81iM2dLZBCQAdlKAwc7gnPpvtrjgsr32Yymo6MLeePJwsUWHcrw6i3JcCEB5e6jnOVkDzH3P7Vlbf4mogSCVXIuWs7BSVZSMjOPbf9/rXm+f8AqODxKxRVu9mUZNysynEfik1M4sajPNrUyAXIjrg0FWQAcn6kY379Kae4rhsPx0NMrfKxl0qeIKe+wJxjavH/AOv5cSSULTE0pPZBiX+3TLg48nkvu8zJKXtsYG++MHJ99jUlviKFIvb0XKHjoUpBVsNsDGSeuTRi/wAQZn/+ZbQ6SWhi28UW918NJZcgSnF4QlwbjB3A7n1yNq9DlX8ybciI4AUNOa/L8ylEYyfXFe/4flPz4cn2hKkqK6K+lp995xA+bYlO529/vTbstIaa5A0AqyS4cZwa9e5OXegpHvHDUHhJHAMqbc7tJ/C21ZkNlACnFo/lykeVJ15Gojcjcb4qp/FFvs/CUl2I1FiR5LakRmglJdAWNI82Mnqdztk49K8KeWMpcW62exhxSxRbnVVaPJ4vEF2t1zaXb5T0ciUiQttL2QVBJGVDO/lUob/5j6165/4gvy20fGMJkRkthXnjoWEjUklW4wB5e/09c93kYsc0p3VHJh8iMVUlZ49fuObFN8UWnHmo+OYkORm46G2ikABWyMJB69N8/Q1Mvl8sr1+vDzcVu1xkoQYqGl4SgjSkgjJzkb7HGa58flQcbUtRX+5HLE09GOg3xRVz23i7HWs5AOAcZFau1cUcPxuK46r0+uZbI7pckMpAUlICCRscAnIBI7gb11Z/KxYsUcnz0cUZXKjeHxmi3C626Na0RWoY/wCnjxlRiCjfY4a0JwdzgA46ZO5qcrxFusLitqbbzEZlRo7iAkMuFrzDGdOs5PbByPal4+XHnpx/ubt6M2njzim8W+Y1c7xJfjF8KLJdSGN87coADH7dK0dh4he4acuFzn2YSUy0kBiQVx2jnzakkDbAO2D3r1Z4o/tiRGbq2UtvnRHL9xXdITDNtjoWw2uOSXMkqVsFqJOTjOc70jl1adv7K1WxycGXkrXhBxtuEqIHTb+tTKM5NO6/+hckQ7m/Zv8AFFslrCvgdeqS02VLKh/6eYT+hNes8JcS8EN8Bz2VSW4V1RqUxbzIMVTp1pCCHAAkKxnOT032xmuT7uNLoFKPKj0Mcd8S2u9zVQbSIVzLSFNRYV1iz0unTpClrQTjqNj9u5rIv+LHEsG83Ph+4Qoa3XAFTm342tKlkJ1acp74z7g1x5OvsfRvyaW0YC4cQvTeMWr9xJw9AuVr5u8SIpuO2E4GcIT5kjYHJBGRTvD3i/fOH/ECa9ZG7fAiTG9Ko70VK0NoT8oBGMkdM9fvk1auaVO0Zt16MlKvRvz02S++23LaJ+EYiocDbKAonGCDhIOe5O9ep8P/AMS3H9nhWaw2uXaEx2XG29D1qaSh8hQILqkICl7jJJOTmm8dypE8kik4e47ed/jUuV141fi2vnvOpmci1xpUdpxewSltxDiAkdMgE++5NfXHiFwbe7x4TSLfwI/YrLdXVAyJEWxxre/MbyCEF9htJTjfoBkHBOM5rNHg4p/ta2awae/Z8VQ+GbnaOKnonGslu4tQZRYdtibmlxPN05GNCyRjbfGM5B7itTP4kVwZxXFK+BYIsJlpkQHFOORJaG0jBKVoUFgnrqVq+pok09QdIm6/dtmrjcfcC8U8RC2SbVPiFTjkiO5C4lkIaQUo1AnWpIDh0gZ2Gcb15XEsi5/8Shsc+5y7XwVImqJnTJZJRGUrK1BwggqO5yRuVb0sT+mpKfwW6nVHrvHHg14N2PgWbe7X4lSLg4w0S1HQ/HluLIIGMICcHfO+Ohr5atnGFxtlukWu3yyIz8lC1AICl+XOwz0BzvjrgVthc88OqIyRWPoqLtOU1xJJb5oeLaQgqT0BAwcfcVufDq5SbBxZauJixb5UJ55UZTVwCik7ZUcJOodvN0yfrXRONYn+UZ42pZEeh3dt7j/xGnSY5sfDsRxrDDyZiksJU2ASSPM4cjP8u+BjYVqeMvDmwWTgZq5N8XW2UeSFFiIxrS+RgKIWSRscnOK5I5VGEYrs3nDk2YNzi6znhuPZoLCuQhvSpGpZ175O5O3rgVr2vEC3Wjg202TlsymwWm1olwkuNoyrKicpJI3GBjt0PSqX1ZTqX8mUZRMFdo/43xBBgwbazZ7u8+tAnPSFNplAZGrl48u4O4AH9azdz4lbsdqU1Z5FwuFzKUtvS5LSG2mwNkpQMqURjJBynqNtq68msVPbBdnnll4sutuvuu3SUwpvKWyp9xpBC0acrySDgnB8w3/WvSeB3nr0H4rsNp+IjzLdUtttSkE56qV1HTGO3TrXGvs+5ukXzPS4MRrhvgV6GuwWq5olOa3Jr6FuLaWrOlsKSpJ8ox8vc9816Y/dfDu0cH2Vm8eEdiuUqNZGXnH+cWFylBGnU5hskqUTqJz1A960WafO4SezThFxPLfAqfwtdL3erBd+HUz31AyWVJWBpSnYjKtk4yMEY6nJpOLOHvDm3XSytSOL1OcSXG8LbuDUWWkxLVH1EBa3EoWXDgtnbGMKB7GvQkn9Vrv/AOjkW42eHX9lcLxbuFkj3ZF5hxZS0R5LbilNvBIwFDvggDesdJ+OkziksKLpX8w3HtXUlFV6OeTb0e9eEdvuE6z8QxYl7tVrQ0pvWm8SShJCtW6BpIB2GTt2q/ctMaTfzHv3wsq5w5XLROtziXW3UAZAKV41p6dCDiuB6ytrs64r7EeXcSzL0OLo795det3LQmMw8wwkJ5KNk6dOlKjjvnJPU5qy4iv/ABPxFwzEsaUy5lqQta1TTFILuCMAhOxwep33NUsack6/uRypNHxGvj6Xcpq2IzbAMpam2mpj5cbjLd2W4OmO5/y79DVLw/IVD4uZUleqSy4Hk6AVJdI6aSdx1Oc1+TZMahBqRMZNyRu5l1t1ttcxqJcnX5axqlvIcLbalE4SgDPmCCSCMK6darbzKsl24SXCut2fnOojkNyQ+HWG1+mFJHoNwdu5OK8vFHLxU4Ldo7Fwb4yehfD7wEf4stVxlXu9N2aLCcQU6Gg5zUqIGpLmdATuPNkjfOOtWg4YV4T+II4r4YlIvzLK34cd9+ChauYpQZ1BJ1JOnUCk4Tkn02rtn+o/Vzvx1HXVkxw8EpMYdVxpxXJ4hvdsgzLlZY0stsyW2FKS62EltSlYOeWegKdgVYyKzT/hExxW4qfwih+1LSpLUmC+y4tsvqV0ZWRnBBT5VZIwSTis15WLwsrWPa91/wA+RODyLZieOPDWTwRYIFxc4jtV0MmWuOmLCkcx5BQkErUBkBO4G5zuNsEGszbkLlvNsFehQSAgaRg/XHb65r6LDn/qMKyJVZxzhwlxNEW3IdpSYa0uSkjSrSrUSU9Tgdckeh+tZL8TWuUXnkFDuMdNs9z2q4K7bJLyBPZU45IcQXHHskpcVspQ7knuTqqU3P8Ah5jji08xCsFSErOwB2APqPWnJFWX8W7LdjuRXbs4mK4NKvOo4Tn5dtx0Tt0yB6VMtrUe429+Pb46oMtoKjCQ4sgvA5KhjPUbnfO2PYVzNShtFr7mUMmE/bZaW1cqSw8nyLUdsnUknH8ozq264wagTrm5JtcSItXLZCcqSVaklQGMjtk4+2a6I/fUiHrQlrkGGHHENIcWhONSwMbKz5c9T/pWhkSWZTEmQxyxJ2HKcTgqI6jT07GratjT1RCExiZaE/HJBePlZKFJSEZOckY6ddtu30qPCcbiXlpTD6HFLUSpJSFjvsrUMH9+tEU1okuY06NDWXVoKQV6SEqBR7jB7Y6H3rQRSq6h9LLa4sTH5TbnmabJOdsk53HfGMmsMrcfuK70XMaA4hqAp6QYy1KI1IaSkAJxqJO+/wBR6ele+8M+J/FnC3CRtynWuIeUyhmIuWpOYSQTghKCConp5sj29MYeXLFLWiotxMa54tcXx5L8Vq8OMLW2UFpTpWUpKsgJWckEdASc17n4XeIEdVlmji7ip6G7EilbUVLHMVNIwQlPnGlWdtgdt998ehj8t4pcsjtGkZOTLribx1tE+RboqItyiWZkaJrcd5lD7qkJ8i0LIOSSN0H0614fcuPbfMXIuJbnNssP8tSpCAFAFXlyB3CSMjJ/SueH6zkjPlCOhzpmG4n4m/FGY7En4ZxQcbSxHRqJUVEe4ByexHQbmqC6W+cZwEq5IgRW0htuOg6krOflUAOgzjT7V4080s2VZMqtsxa+DFP3SYrjltFvkyX0OuYUWGgHF6c9B6Y/1rS3W5uw+J0f9KpL7qQ2rmM4XgY2JCsjPT7GuieGLnFdaJTpFAyJLF8YmSbgqFzFFxz4ZsvHTnbUc7dRuPXPYVeQuIlT4js2a6Y8FBDelgdcKCgB36bH675pZsUZrkl0JOiVPu0NF1toZWi3PalJCZCMvNJ9fNsQft3HudfaPEXVeDAkoZWyjzKkBOApOcY6A9Mb/Wr8eXkeOuUHXz+TXkrPSWLvFkPFjnBtZTqSjGM/Q1EuHENvhlhtn/qHwkBKEEHzZ6E9vX1r7OHn4pYPqR/4yroy/EvEFymzDbCl1tlslWjWoEKUClaCnGSTnp61nVTrm6uGJTLifh1Ao1q8qcKyn5uo22+nevmsmXnmc0Nzm1smJ4lnm+R5zcsSl/8AbkpaZyopwcZH3646mhu/FM+QFBht1tJbAWELyEA7fTf333qc+fLLGsbfZF1swkm4aI7rjbLjsdDiU4Dg1ajnpt6E9PWrRqXOuDDCXZSlKUwC42DoIA205IwMY9a5nGsZC2S4l2dFtXGTK5XIOpKlDy8vcZ7Zxt96g3ybJtS2n2ZJUpKgpwtDTkEfMTnuce9PlznGLHVKytjcVzLLNbXBZTNUQCVaSS2cg5SR8pwCMnfBNe8QvFa2xLbaJMmzBi6kl2U6t4pStSgNKQN8BJ1Y77jPSu1Zp+PDjD2XCUeLTPUfxKLeLY2+0hTsRYC0qjIB0kdRnerORxt8dLQ2qVJaS35W0wpLjWxxgEaiNsfWvpPElk+na2iotRWzN/HtpuLjdrZzIcVlQTlRcOc7g/fFVVhuF5TxK/8ACKS48Y6uaHWwSB6p1DZW9erCLUHKfdGadukGtm5PkoU0oaHQlatBONumw9a13A8bhxjxChXDi2Jcp/DbB5k1VvYQp54J6oHMUkAbbkebHT1GW+NR9m+PGnK5Ht1/8TuB43GHCsvw2tM62OtNuuoi3CyR8KWUjQUHWVZ+bzajpKRpAUM1qLlx5wU34VW/iLi7heLeOJ9KQq1JhqjJLgUsLddfTqLyeWpGEqOQU59jxzhk0zf7P2s+crfxutniRbtrskOelLRbQZaSgtgpOSNCkDvjfO37VEwSZ8ubNdW3GC1atEfcDJyQM9P1o5RwSSfZjJxaoztphy7xdXo1igzrk+Qpakx21OrDY+ZWE5ON9z0q9e4S4gtMltyVYboxHTocQowHNKu/zYx984rpbk5UjnaaWi64O8QZ/CniRJ4gchR3pSyrD0iMlxaVKO6gT3GSe4+tfXNw/id4Ye8K5LlwsyYd++AC4r0cn/qHwRgYSnyg4UTntsK87Niy/WTT0dWGaqmj404omQbhe2uKrWhq2RX3Eks/iKlSX3FEqW4VZJT5iSckYyOpzU268NXRvhG2XLS2PxFK3VL/ABBL5O+c6ioqORj5gPvXZPJGHHl8mbjb0Z20Q3mOKzmQWXYZC0lCApC9x1OMb/pX0vZf4gOLrJBagmJbrpb246GkMyGjoSlCcDSEkY2HpvXBnfPKGOXFme478eInF/gzerQOBLVbLhISloT0sDW2NQKtOU5B2xnPevGvCPjKPwfxVcZ8yxxr+y6hsJalq/LCgTvgDfZXevWxRePBJN2Vklc0ZS+NP3vjW+3llEWFHekOSSylQQlsKUpRQnPXHQfausE5b1vXGfeccZYTllJcJDack6R6AkqOB3PvXYmp4znqSmmILvy5bvLB5SSVISPX+/TrXvnhfBPiZw3L4fuajEQ1ILyrkhpsJHlSA2QVJ7jOBnOdx3riyQjBc12jojJ9D/GXhI1wZPtV0jXsXVh17YNMNFKMYPmwtY332I3way/E7Ma4rjvW7Ra3gPzSAPN032wR0rll5F5U2tIFHgmjBXhD8C6x3513Q+4pvXGKdaiMb75G3X9686uE+XKuzz5Wp5x1etxTh1En/wCK68k4ZEqXQlaX8lQ3cH2y+EOoZb1YICMnuCc9dwcf/Fb3h69NMMR8NojtqBTltRUQknJz2q/p8o0YNl9cOIHYlziuW+a/FUwvU24HsKQf8wx0r1tRvniLw9AnQ2bjxVFS+G3XFS8KSB1TgrUU58vUdK1gljUbLTdHlt4tkrhbimREetUnh6ZysOxnJHNUW1bgk9MZGftWMlSm8KeUMq1bq1V0N3PlZg3Wj0ld0s3EjEKU1w5AtUlCNb8+Mt0OunB3IU4UnPfyiqp+/R4ttjsO2aEklf5cwNBD6h7nOD+lc9yXcrN9PaQ5FTaZEd+R+GL5SlflkOry4MfMcbZ/1q0ulyt9m4FEdhKTNWsKQCoqUEHB39P9zW0JSbG4+wrc61xBwm24p1jUhtQDIa3OMk4IGQrcnV6d+1RnHnm40SC04pbEbUWypeEN6jqP139a4fIyyTpCqkfmlIjTOUw+3GWwlRyFqRjWSfXHpj96+gOD7nZOHuC490usA3O6y3XShiGpptTTKcFa0jBA1J5gGAN0+ma/NPMi8sFGPszxPg22FbrfZeO7E5+FSTIv9uXz1R5zSW0SGBzSoJLYBJADXpklX1ooPD/BtjsdqY4th/4klOyFKkQBKVohkdUkNLC1FQG4ASB5d9lV58XkxVjWmmdFRf3ej1uWU8NXebEi2m3xeH5LyoElhOFOhsNYKGkk6kFISrfVknSVEgZPk/G9pXwtd7ha2X5M19pnV8FOnsthrUErBcCFkIOU5Cc7HQMk1yeMr8n8X2dOSacEvaGPC7iy4scP3b8MutruF0fntPO2c6m4yGWkklABbG5ONwvG3c1XXC+8R8P+JTMS43K5WGapwtzY6UlnUVDS4oJ2SQpKtuxBGe9bS8fDHy5xj3+f4/5ZDnJwiSvFnhLguyWCYwZb6r+20lyGxEkJUhgqCFFL6l5JwhW2nIztq2NeQ8H+Hd34ugRpDUgW6C46pCX/AId15RIBJPkTpA2x5lD2zXbg8x+L4XPLtp0vVnM8ayZaiaPiHwT4s4bts1blztU+K0nIUy+eaU6gAQggKGdQyD2NeWp4bnsoV8S2sMoWEuuJRlKc/wDq9RXf4n6jg8zHzgTlwzwyqQ3GeYYnvpIDzZJSjUMZHY4zt+tXSbVMmCLyBqkKAyps5Cc+uO/XavTbrbMCROiRoRbWX2ZSAhQU3rKDsnZW533JIwT03Hat/BVHmWO3XJ5n4ZhICBoBUlRCdkkjABO/Y/1zzZZPimjWFWUMmSg3M3CFGVJnc88lLjSuVsoYVhIAzv0yBuPpWblrRc+JCicyqJITKdVKZ5YQlvzZDaUDZAzkEAbe9bY7r8g3qhHYry2VSGWFcgJOhZITpA6kge1MMGQJZWlaHNQKQsnIOR13roXRnRLcaENDbalqU8s5VnoB9O+RjeoiW0uvlJcDSMEpz0z/AL7b1NiJ0KM+ZrLSA2pazjBX8qff129K28GE1+BOSGphDLbfnjJaU4hKieuQdia5csqrVgV9vXNfuTehWvBK1qeUlIwkEk+b759em9bRhRRbNTL/AD1FwKWlSyELycZBGSoZPQY6Gs8yX7aKTLVmHGv01FzakgLcQApDST+SU+UEHpg6f1zmmJ0q1wFJcUh1b/lbfcQtX5IUk9MbHIBzmvL5ZZz+n8F6Wym4guUQWEqiyHnFyCVtICwUgD5RnAJUO52H61AgXZV5sBYQ6+/c2yCU50YHY5z5sE+neuyOKsPJrpmbey4RaZikQJi0JQqPpI5rWUJSMAFW+QdRyNvvUSbDdF1kyZ12juRHUnTpUVtZBIzjc7HsQT/WsIZYudJWDTopnObaralKpTqZXwyg0WARpStedKgoDYgatsjp6mra5TG4ky2tOQGpcd9hCnC+1lxBJ8x1DfzAnv8AzZ9K6ZJuSa12HosY13tcKCluLyi+6dTrKGNDaRsMAkmqe1SLPcJkl24sT4iEPFchqMo6UrKhglRJCCScZIwSO2axxwzRTl7G2mzGPNqTeyXpC3W0uFDS3CCcasD1x3r0yM4ym4xWEKba5RDaiiKhWrAPmKgpJIGcYP8AbFdPk3SoFRYwr/Ihz0tGQmYQ4FKUlwBDgGwGQc9+h3G9Q7or4iW5FYfBUpZLiFjSpPcp7ADv/wDr7Gs8UeDVF8rRNtryGYiY7DofeSRzXleb1wUjHy9s+w6U0orkTnI8ha+QpWVKOdk47AAbgZP39qpUpfkfaK8f9O98XaVqYWoASQSMLG+CBnr09frVUuVLZkuOB8rjB3BbUrA9M4z9zWqSm99kuxlw/ibnKYeLqyshSubkN7gZQNu9aMf9JaG21MllaQU6kpwAc9T1O/pmiSpKIRRaxipFrakIUhiOWwko077E5xkdCc0zKZhyba/I0tuOvABTSgcADG2kHfG1cSu7RtqqJENDbTSEhOhGFENoACdsb+x2qinOR25KpSFai0hY+GPQkbZ09PTpVxUnIza0bTgzitdl4ZUlhLrjMpZWsuJUlIUOmnqMEZz74r3Xw8kcFXXitEm+cRtwJj7oStK2VaWdQPQAElW3XYDO/qPd8Xzlih9GWr9lKPKkfYg4K4GsNtZmW61MoTAa53x/mU8dOVatQ3J+n2qEPEuNL8OY97ZVdbn8WtTQiRm1SnGiDpJUnBG2xHrke9fZSXNJNWZx7MNFnqjzLjMkFUi4TSkLQuyyGkLQAQUr0J0jBwRsdz2wKfkcRyBwzOhoRCtrcuMGn0Q4L0fWCQVauadKjgEFeErI74yD83LI3ltdfGj2IxpUzyG48K8PXC4RENXRxmWtZwkFtaE+bqooWVIx5Rkgg5z2NWPEUGXwp4fstolENKjKYLTkfKStQKypCjsdvLkV6UfJ+pOMK9nI8bVyMLZuGrhOtofgrGt4hMdDikp5iwnzpIJzhOc5G3rjpUXiuTItFxFreWhKmEJBDKdKDtnV9/710TjHJkT9nLK4qzceFrfFdj4wkXOywILcufbVRB8VIRuh4A4AK0jWRjAySPSvW+HPEjxH8P7pCtz/AArGvTVvhLgQiZYCkNqdCzqUlak58oAG2AOlROEZS42dEdQtlxxX403PiTw4vVpkcD2uFLkt8tEz45L6UkKGryKawroU4Jx/SvjrjC+oufED85qDFtCDpQuHDaDbSClCUakpAAGopKiB3JrHxZRyTlBO3Fk5ONfaY+Pd3woNoKlZ/kA2r1nw5snE3ideneG4dxLFvt8Jct1yWpamozYUNWMA4yTsO5rvyYYXyZxwlLo3Nw8Pbpwhw+3cZNwZnxJ4S0lcRahhWVApWCNORoX3/lNVUe1pGrWG+WhOAjV1+qhtXheXNQno34mhjZQy0yMrUohKGxlZPsAM/pScXeHHGqY0V6PwnOQl1BWXAxhK0gatidum9a+Ll+oqZv3EyvBfDH4lxNJt/Ekh7h62yGXmlznLep5LagMA50nqf8qgdj97i/WDg7g3jS4cPWriidPtK4bbiH3WgUPrUAojGnAxkjPrXp5MjwwerCEeVX6PDprv4dPSlwOJQ6BpGxUUnvtXoHhrxLcbPxZClW6JJlTi+pLAQHVpcBSQvLaQQQkZV0zjPpt48I8+yrp6PsK+xOFr/wCAdydh3X8KmRmQZcZKnFoYkIIy2VfD+UnCgAVZyrfAzXzoF2sDUUFCwnBGsqB9qmcuMftHNni/Fl3RJvCvhGm2W0ZSClGCo56genYDptWSauepl5t1kuxyOiEhK+oyc9Sf9acZTmrsjpFBLLSpTnK5jMLWdAUrUTvsCdif0rVWeQmQtMNCVLKVhJCBk49cf617kJNxUrOTjctF/wARsRW50ZqM/Kk27KEuuKjBt5GQNXkCiNjkDzb9dug0nhxfrBw3xa/+L3e4M2yTF0uIZhtrAdzgZSpShsCrzYzvWM80Gi2uEtm540i8OzpLF1sXEEi+xH2cPvLaKQ0QfKknGNgQMV4pfFNtOhkHloRnKyPMrO4z774prNKSoOKuzVcLO2aZHtQvE9NtjKfW2VxtDWg7HWvWQFDfGMjoNxS+Kdx4W4k8SNfDGGLNlbbAbgpaS2gKKk/z5WcHGfKOgHTNEZNSpmkknE9Z4L8NWOIfDaLJtXETnEPw8j4e4FlosOwk/wAqkhR0vjTqzpUk5GMEYJyPHEDgaNw1F/w3fZkyS27yXWJtv5JUAMFweY7EjofWtv6jgtrRXG49kTgniezW2M9CulqM2OyrKW1vLQCk/NkpUPr/AGNTuO7vw4+wkcL5jMKbAcZcVrUgjJ+bSnIyepGf0qPq45yS0Q1rs/OmdNiOX2ezZELcjNOrDS3CVFbST5VEdtt+vep3D13XInyp3xiIM+I2oxpaY48+QU6F76QME+YpJ/avzmMXx2ctnp3C/EVpt3hyqZa40+FxPeHlMyLgyw0xHQDqU422hBJxu3jSEDcjpgD06wWYXLjO0XPipm1It64Klx4sdoLe0pQhxTy0kZAX5gcqThWcbHfyPKqLbvb6OyCtL4RmZVqtX4DcbpPuCYEV6WwwPiouo6CVKCW06lEf9tWpRI6pBwCCcrxUbNNuL4sDD8eW++eRHdbymQhW/nwoqGxbGDkbdcgiuTxnmTutGs1FR/JruD3uHfD3g0C/cOwJd/kylJlMzLelQgqA1NtpGehVgq1ZIA2IyKhRoDt44qLnE9oj2+NJUh+K247zAUEbctIVlKMBRz0yAnsc1kzSalNLfr5M9aRGkWKDefGaG/bLG9eyJzLBgLYbbC1K82VIzhQJ1AAqGRhOc16DeXIvhbboVq4UurQciy2D8C9bUHzIKncLUoqxqKQSjbUD66q5MkZzhCE/9jaFK2iotE0wLTxHxPcUxZU15xaHnn7ep5zDiCUKQolIaJI1JTnok7YGlXkPEfE7Tkhq4RILi7UkKYlSDbEttqUVlTZcKE4SsbdzsNq6fFxRlnbhpdf7E5m+KXZ5BdnrfLfZLJLcouHmqSPIc+mdx96lWWZOe1MtTDHU2nyp+XWCMfQ5GNj1FfZJNY9nnrskT0ph8Sqhc4TUrbOpSUDbWjCk9eoV03qDEnyY9lk21lgklWoOBzZHc7HvscfU+1CipRQy4XMaagz3G20oQ4wlps8zzPrSpOQBnY9DgAHp22p5LZTaWWBY3oK0thb75WVuOKPVRG2O+3YdfSqri7bo09dDca2XuW0DHaBSo8pLiiloLJGMbkDp39/cVfWWxJRbJD8sMxngNDKZBUFFWM9O3TcnYe4qHmhdJ7Eot7YzEtsF155+9NuJY0BDS47yUtsuFW5UcHygAjGx8wNRrPZC7eHsSELacjqdhrcZStDwCtOVJKvLjPcZ749ZlkceX4BRTaQ1e7RcrFIMt59pSHXihpTS0avKOpQknR7D607bb1PbgpiR1/DhZAyBgOeygOpyetaxUM2NSM2nCVGqC33ENFhjmNOLKZISA4lJSnJ2+Ybf87VS2+5Ox35KnW1uxgs8tG58wyUjGTtUKMWmrA9K4T4cvHELMqLGSYVsD6kFZcCVA4ClJSkb4wcke+KtLxwpfbXP/wDutMJeS+58ODtuAkJIydunXr1rxp5sUczibcJONmHn8PquEd2SL/HekFzUtkNcpthRONPXynqMYA98Vj1If4dvSkNPqKF5TzGz+W4nJSFZHYEZHWvVxZFki4ONHO1RfSbhOcusaBHkFwB0JccUxjzE6QT7VTykXB24SLXDcM5Zd0EMt4CjqyVKHbc/aljjig9/yO7LS1WO+XqM5DkRHmmiMmeEZITudI3AUCSD16ZqW3FucuCuF8WiHLZdKZIcwwAsDZIOfMT1G2BnOQOuEs2Lk63RVMtHLJaEW5uHeLi27JW+kwg04rWlJBGVHdIR8pyQSABjqapJka12zieZItVx+NistnSXW84WUKxk5x39OoA2JpY808jqtMGYsLf+PjnSFvpeyEKR1JIxkHrXo7zyLXbUzYk5DyivAbUjKlHbJBx1PUp9xXVmVyivkVkyySGJkd6QqIwhoghLjbKQclIyTjy4yAQCMneq6TeZTbnnYaelJGFupYAJT1IJHUbD12rOMFzdvo0vRZW2Q0qzGZKS3BQpwIZLZSn5SPTsNW/TrUC7luM+vkzdTJOtMdGrb1xn17b9KIpqdUL0cLgIv5j7rZ8iRsCQMjGCfTf9quIrEG5wtS2g+oAYBXowP2yOg+lYu4Pkio7dDgsLAll5haWcbqKU43A6DpsM/tT9xLLsdLb4MtKVghCQSTjI69/7VKnKcv4LqiLNddixGnF6UqS3pLRUFA5yAf0PTNUrt9DzDbDbXPWhJwUnBTg9h/zc1vCCashtkluc4iE4XUOxpJQndYwOnlGcbdM96SLPTJZkSXpIbWjToCjqPcHOfqTtmr41sE/knOXBxhaGY6W0NoGdOE8tQzvgY6knP+lZ9FwlRuKmnJHOeYCgrkpVpBSd8A9jgf8AOlKEIp7FJs/Q6F4htcXfw4W2Gy6bdKcYbZW6uelPl0gEAJ6jGRhRGa2/BESJwh4WXB+58Quw3HkqlF1uNzEsDSBqxnznAz09OtfZvyXHDGSXdI3x4XJ0dLg8K3G0u3iDxpJKloC2WX7U24JC3CNPmWnyAkgbg49ayM1U23TmYsm7MIKkqS8otstpbyMkj8tJX17D71wXibrjX9zuqa9lZe49s4jceDV+XEjxypLKjrBdccIJxhKvJgY3xuD7GsPxXHcjrtNkRezdndnFoKgltknONS84O30wOvWu3x1h5xVW0ZTlNJqz0C7rXH4Ss9ut6lIbiIBSpgpQpR0ecZG5yoDfONj674WJa4lz8QLSuVHdnvNuByaHnUKQQE+UL1EZwRuMbiuR5pQzOn6ZzKpZEn0esqtt1t0dqdwnaZLUhCilbkJl10NIxkgaXCEAnGcAZx7VPt16vD9nbcukx5clROtZkSErYAJGASSU+UdTv70peS3hU2/uPT+lieXj6PCLhcrxepzrSGW7ZEbylUmSpSUBOcJKcAnGAMdf3q4icGcNXC7IeeuyZhcQlIS2pKW1aQElSt87nucde1RGS8ZPg7b9nmKPJuxi/wDBXDz91bdtUmNFaCwhtosOJK0BI3xjYlWo5CicHpgDHrHBHFFq8PfC+926PbJD3EN1kN8+dH8rJZbGUox82oKJySDnJ+/fHyfti59ezWOOLviQOJuIIF/uEJi2sKiwo6NDJfylSyAE6inVgE4BKU7ZKvXNZWaVoQ838Q2hYGW0EA9O5APbb756V8/kyPLmtmL7oqluXBcNLgdaQoDyulR1OKAGBudiSB/pX1ZwDK4qc8OLTY7+0LeHUIlyJcqTltDIeKAheNY0KCiogjBAGSMYr0PGeNW72VFbo9MgWx7hngW5mN4g8NQIKX3rjOkRbmvYad0hpKAlKBg7hJPbfYD87vErxRunHniTK1yg/B53Ljkx2w4tKMpSorxrUTqOATjfpXV5EoOlHs0Sa7MFf7hY7jIt8RTMqFIajJZlOFrQWnU5ySnKsgd8BJOOmc52dn8QoEK7hyMQ3GcYMNyHGY5kh1tRWC5q0hOQAnOSck/KBsFGLcEgtWe38M2m1T/C+4P3Pjiy2+4urVNaguTI8ULSkZ5Zy8CVqJOBy0d8ZyMeI37jBpiA/Ht6GwVulvUMKCRjrvuTXm5Vc9MJdo8Wlm5SrwhiK0CXMrQpWMq26kmrBHDsxbZ1XGOiUBkJUrZvPbYVX14YqS2xrHPJb9DM2wPGwpQxMXOkBQ0JS3/3CT271qIaInDdvShRUl5Scq1L8yvfA6V0/XlkhSVG0MSjJyZMMk3O0uPIjJW2RlI174yPbbqN6pFWdC7ol2VLUhnX/wBlvABHpknv9KxnnWJ0lbJyYlklYnwrcMaoc1xlZJ0lxZKcnsQBTLnMdYSmQVPu9FJR0FJeRJreiPopP8D9sgN3C5LbmyRbEJQS3rAKT7Z1Ct4z4Z3mdbGJMC8RZTKhlCkseUj65rphPn2zB4pegJ9g4wtFvbt8i8oiRUuc5KWgoJ1bJBJG5wAPp96qFuSVSW5c6eqelhkZL61YWkbDBPbtXHmnFS4o3jGVbZreFbYjijje1WuXKh28zVtttup3aZSc7kDG+dKQBvk+1fVXEP8ADlb3b0m4qusW4spKm5brbymkNBKQEEK0nUQlKlHA7dhvUY6hPkns0a5Ro/JK3s+G918Q2G5TrnD9rQtYLyzkqTgqRqSkHvsSCcgjHTJhXFuHMt8mHwzZWLdZHUY57+pbqynf5jsDlR8qRn64r5KMPI5RWR6X/dnBJ43fBdmfs1wcttv1GXz2m5A5bamcBso0FK0HuSNQIIyMJO/b1CPxNbr9b35DTU5i5xo7qFsxmByW2FDGcIxoSHFJ2II823YUeTgcmpr0EJ64mmeu0h6DEiXR1hUILZktlqE00uRlI1rwhBUVKKG0JUTsVKV/MvFAFXaNPY4yt8htp915bqmlNKdShZC8qSDtp1ggH+oBrjilgx0+mzrySc0vwV1sfvnF96kRShc6ZLjKLzzSSpaBr1EkZwMaSfTfc46e0XqFZpHDEa6Lvyol0jQFNiR8brdmeXCkklvzANLxsSTrAHTFRJvlxj6Mo01bMlwKJ8TijiNNku6YHFbcB4RBAQkrfJV5QpRBGtSikdANOr1ryHxNRfLBxQIE1bsq4NlpEwS2VsuIWRqSrSoA7g7Kx0OK68ax5M6T7RE3JR10bTh2xXactqZxhdItosraW3H2iypkq1bIb86QpWQUqJAxjfNZTjGcY3AvFL/DN8jDhyZcy1+FyToktBWrTpTk5AQQNWd8e1cuLhLyuEYXBNb/AD/8F7Su9nz42661ktk4GCanRri+zJWG8ZWEp+TPTYV9m0mjhHDJcW4HAtRcBATqOSR9T/zepzU5BW+pxOkujAUOooodk1NsfFki3CI/8Q0p/SWiClTS8Z339ASD7H0r1KyW2U0tNzbKFrd082Ul1flwvfU5p2UcbdRg9q4PJkuBtjTvRpprEy836z222IeVboq+f/2coQo5znVlSwPNgnfHSnoDCo67ib225EfystSfidTzifk+foANu+d+mRv5LdRpdm63L8FlE4Mg/GR4LMlhpp0FcrmEr5p1ZwdhsRoTj/3Kz6PW7h21cPrUmPJaW8p1Sn0oirKE4yCNSgDgEYwQRtjffGP9RNpxXb7K4K7EkQ7ZNtl0s81lpQdbAS/FbKkp0EYUnPzqCc5VnO4x3qkunDsCD4dG32NZuCUuF19al69SslPlSQdBwAO53z0IrshOUKi3q0yJRT2jB2CTc4NxdShCjykFxYyMoSOo32HUb9c1aIds06QXnXHYbvOAUpvIKgogDzKzpSMnPXOPoK9Saam5wOWFdM9v4fh3KPc7JJ4fWy8/FjMs3ZtmSUIdCsq1YVlJ23ynB1En2r26exbbhbWm5zaSlOPmVjBG3Xv1r4/NNPMq79no1Vo8tv8A4Tx5092ZanWY7akpUllQOCckq26b6qx0nwwnWW1qPwRvnJHNKkHJwFJ8oQN89T36DavVh5lxUHp/JzvFe0Uz0KTZLWLg7Z5KTqKWG0xl8pbmyQrygdMHf1/fMWWyXZHx6ozIQpx8Ky8VIwNyoDYH06nt33FXFqMJOb7MHFp0QpT3E0a7sRJPxSIL2sMshsOB0JJGRkYOMpIwB1HSrhslliMZ4jTr083z2Y7yAhKU7FKds5JIx2PTtW8oQcVw9kpv2efz73eZ/EaS/CQ1NWtTaEmOkFzUSNyRvvn771dtRHOHZyGUtiTPcWHJWBlCM9d87jAP0Bzn065RjGKxp9k37HocmI/dXblLeQqYywtLaUtpAc2B7/5RtgDPXHapUdLd7vDsiGltTxCSpUhOU5I2KQc7gnfORUqMo/c+kWqa0WiUx7Vw46hS2y+hag+hOvAUTnSfX0z7VRQllEx+S+GkMrP5mQlawDtgBWw6+lXFNxb+QaM5OnAurZjBbUFZBUVpICD06+n/ADtUqIGrnCTDUsc1s6eeonJR6AAZOPT2rsaajYl+41jHDsBFtS3MW4+otlJQnOVDI0jtncA1ZW61tWtCxHUVLcGFOuZy3329f9RXmTyTk6a0bcUnaJFxkPtsMsMoSuSkkKCQN/sevQfrUGPLjtxkuPMFDqTlWxCUkZO++PeiMbjrsG7eyNcrlHlQynUpR+ZDW25OM79980kCwKFuROlymIsd9RKkKXpc04ztqA3G2/vntWzk8OMh7ZOk2QvWqQ3Gkr+BSzqbC1ZcJ36AJO2e+32rOWaxSriqS68tQjMIwXUp3JGBjf7/AHqYeRWJya6Bq2R7lDbt02RFhuLlOoVkpI/7fpnbfG2+wqUxdprLKG3G21SP5FOkAep+vXsfXbet+KywTZN7PefCfjs23g9VtS3apc56Y4tz8Qt6HChAAx59OcbKOOg+9e6P8dyG7Aw89w9w3MZWwpTqfhwNQCyjAGdxjHavawKLwLbVOj0cclxsGVxhFTwqh17hKCzAXEbLS48taANWDgJC8eVWD064rBM8S3bihYUyFyUNhS1MtqU4W0lfTJO+fKM/Snt5vp36sMkvtpCSuJ1JfkRnXENvNfy6CgpwnfUCdt9uuKpWb6uTdIzyUuSmkkOOGPgONpznOe33rmeRYM6iYqP5PqDgK88IXW9toDdumX6W1yIbF/bW5Fi5wVOOJDWFED5cbdQSNs/TvHvC7Q8K08XcN2nhORboERXOWbZHkJUhHlKWAUBTWCFK05KSSSRuSejF5WPPfpmyxtLocslmvPF3h4xdrRwFwrcZvPW2ps2iNqTpx0OUnGnO4/m2wQCa8B8enuIeCo64E7wz4b4et1whpTGms4EkOFIK9KUOAjHy5KMd87itIyeT91P+wSaSVI+RUcbT2uEZdrQyhtiW0GnEka9QSSRuQSOpqgjSru9Jt8e3RHH3v+2y1EbJWo9cbbk716EMUXpnJKTvR9o2uwcAN8HwblLt3iPF4iXG54tzvDrbcTnhGospdUsq0E+XVgq0nOM7VieIW7Dc4syTbJirFJCSWI8taxqUkDOoqBJB67CvLzYnF/t0v+WelhhiljqT2eYwkX5d2kBRQstHRmO6HkLx3Bz9hmkush42WQykOC5YJcKsBbYz2x/p3rFPF9RcDz2tv8EXhnhziydxTZUJMmBFuD6GW5kppamAFqCcqIBx1yMj36b19I/4A4ms/BEq+w+JLXeIcNtchcmPKK2nkJON0gYUnIIOMiu/J48W1KNCja7Pi2dx7xReHLvFuL7ke2zlpzFSdKcBWdIHUDKUn7A15xMWwLt+ZLUlBUAhOR965nfPWx8rRDXImqZ1svtkFeRpAKiB3NbHgvxKvfDM99FsttuuV2k4RHmzIKXHYagThSFdsaid8jODg6Rjq+pcCU2pIYltyWgJsu6A6B522iVKz752FBbJchwrLZbdI3LqwDgY8vXp37dq8dy5xbo6lj4z72WEq4vwYyMKS06d3C1646k1DiX4PMpbeYUNj+b8uR0yamEE1yRs506J0q8ctLSGZCI5bBCdzt9fr6e9RYs9iTeWbhdHedCQTy1NJ0qWvuCD1xXfhTrZDlbpFu7eEym9aAW42Ty0pHzfUVWuT1piOHUc4PzD5TiuJr/MZpy0R0XEORW08txjVkpOeu39alsS4ISgIZcSP/yIcJyojvmuiCV0Q5Xs0NztsOLYGZK5TSmZC8IKW1BWruNxsP8AarKwcTXLhu8LbixXLpYkshTrKnNKUHAypJHTc9vWu6vpy12T2eoxuLrFxRwxcIb0JTEj4crSjnYLQAzq3B1AdcZHTFfNl9feFwU9GfUbe3hSUawAsDYjGfU4rnz5ITS1sTTUR6FdwiGhMNTiA4sONt8zZBKth67AnBNe2cPwuIbdYplwYvmiKtxthlli4LKnCsA5AScDp3G+kjetvGcFCV9mcucqo/Oy52ZENmKhczXMCMqbDR0rRqICkL/nBAyScYO29bizX5yJFeYsLjtoUuMA64h04ZJ8qsFXylWBuCO3Qjb5KUnkhyXXx8nBGk6I1qsd3tvH0PDals6krYUZKUYJKkJVqzpGCCd+w3r1zgPgyPeuC7tfrjfGLPKcKkrD2VBCVk6QVHZIJ1HJ3wnbHU8+Vxn0+6NYRfs84gQ3brxYiCeKY7slYMd8LStWtDa0lOo5KFJ+XSArHl3AHmPtUjw8bd4Bl3x598RkIIfmXKchCHVIBUEMtYA0JSnPlBxjAOxz5/mZ8sZrDjj6s0xq422ZeHZIPEd+mv3q52y2RmGVPtSreksIWlpBUW0lCSAQnzZIJOk7nCiY3GFnjo4ZjyY/ErN8uI0fCRG0pUW2ENE6nFtKKUrSCtRySSdRJJBqccpXG496/wDcJRdaZho1sDEd2UbwXORpZiPw1Z5ZKirplJI2cO5SOh3FLO5Tjsr8QS1LucdzmMSUPpDgcISSoFKyDnHvv0r0snGK5LslJrT6H7/fL4b5EcamPQWuUgtKStWpkoRskK3UCAdOxwcAdtqHi24XbjGPYrdHYhaG2yFmJCbQ44oqOCooRrX0KsEkJK1Yxk1j40McZxmvV2Dk6cfklf8Agfxejgtm5XCGu2KmFKoEVaOY88AcAqSjJQDk41AE4+hrzvizhGbYL3CYfnQpsyTt8Pb9ZU2oaQAQoDOc7aSehr0sXn4subhFf39FSwNQ5WamV4PeJEO1RlR+HHru3IZL4RasTHGwhRSdaG9SkYORuAD2yN681ZcXEvSDIj6wnP5L2QCem/cYrtw58fkRuDOeUZQez3a33VuXbPi4dviyVCKpLSX45U20o5ISkqA3SeudsdANs6+33a6R4KokhL3OecCpbaFhbRQMJ0J04ScYznuMbnGa8bKt8W9o6oS/BYNPy/xJr8PaUw4+15VMq06BuEKWSBgggDYlO1AmUYctmfzWnfzFEa3ArQkpUBpznCSrYpxg4x2JrjjTfya227WjXsyZjEaRcJKUpaXGLRdRLHmJGnUob6AQCdJCTt071hY79tZjzZcya887LccSpaXClTo6YI8oKTk5IOTv6U4xtvj0S2vYhCpfEcdFpKIVsSlDZQJGG1lQCs6Cc7HUe53wTsTTbZjw+I7o9AkjS7FHxCwtKm1FXdJAOjB0ggnV1rscm3VfyRtuyrukS3scOiZBjIYccSA7Na1KTzAemVYCQcjIG2wx72HB7PC1ysl3t02W7a5khhKoEh1lDpkuhY1IQkDUgn+XHrv0rolLJ9LuxwjjeSn7PoNEB2yWmLCBStESOlouIb0g477ds5PXuTVBPkTrnBMeO8pKAooJSdO/39K+KjJxzOUwyck6ZsbRcX7Zw9FjzZXxS/lUoDJSScDP0/tWrjrcdacWhxPJRg8zOnr705TqWjWDtByFQ50cNy2kvNAAkAk7DB6j7GvLOKPDh2aylfD8laHWlKcSwt0gEqBzv1+lelhz9c+hzXI8suFs49tbJYhWaQpt6MCtgActS0qxnYbHBO3Tr615J8NfJ7Um5THFtLbkAcsIwpZ3yQOwAGMD9q+h8d4P3Rezz5RkipYUy3xjBdXK5iVOgqUSSW+wJKttjnucYqdffg1vvFu7PPuuEBXNHVORg6j9DuK9FqX1FS9GT6Msy8pEpKS5zA2vAPZQHT33/vV6xdjA4kDttWtphTilqYKsAHGdOB0GTgfTetpRvQRddE+PKWGpbRmICtJWtsp15yQNiOpwTv8ASqCROcU9sUJTjKQhRORjGCM+2fvRCKsZIYU8tsNpackvu4CQ255QnOSDjP8AtW2tlgXDvaZj2I6i2csJd1JWT036+/cbVjknx18mkE27NE4p9EVYWUF0J04wB7jb6frmqv8AEDHVoUyQrAbUkr2Sk+m+9ccI8rs2JkOeX7gUhxbbaE52OTgDPfv9qbucd55TRZSyEaTlJeGSOxO/XHp/rWnH6bQPcSjgx40y6JiJlaGQkla3iE4CRsBjqe23et+/a/h3nnmmByG2fLznA4lIB0jIzkqOc4x6dKw8nJUowM/Ri08UNsymoraeSkFJCmHDpVjOcgjJ3xWhtMqddrCZQUIIbcShDyG9Oo6TnONic422ql417YRuToduXC1wmxY9xnSW2WiySpjGCojspWCN8+orIXzh2522AhlpLaylBLynFfIk753xsME9M79+20MihLh6RrkxuKsj8EzpES+sqYeLTqEFJXpKwhJ6pKe+dtv9K+sOL+OLdcvDvgqzw4LFkVaVD4gJCVGQt9A5ji1+mUjDZwABnqVE1m8meFcI9Oh4dxZkJN6kROHZdjefUqHJ0NJdaUoFSAErITjIwFFK9wN9Jz0ruGOIVw3pcaCFpQWvzlIVrUsA5wkZJKiffasF505N5PRVU0h59aZUpapa3FMltwuvJR5gTuolRHm3+vpmqL8Sft/GXMVIEVlaOc6hCW/zEb6HE+XSRgEY+vTNYZ8znkjXwadbJIlplXJ9A0otpUNSlFJLatORuSMnbAG42r2+w8R2S4fw7ybbLgw3L5CWtKJSZjwkSGypPLJGdBIBX0GwG4OBS8bKsEnJ/BopTekzM+H/AB9KtPF1zZcnXO3x3lqcS7b55ZUVa+oKRpKckjoDg9elO8acZ3biZhC7lfbjeIqFYjructT7iRv0z9e1fQ+Lk5Y4qv7kSyyceNnk88LaKFdBgFAB/c/t+tWdluFwhyEzospcZDQUSpClJI1bEJ9yBX0CmlCzl/1H0LxL4yXC7eGXBRhXacJsJlaZIkvIcAUAG0nUAFHICiQoZ3zk1aXDxYi8W+Bdo4akTXYlwjvpFwcDKdMogqPMCzjTkFAxjtmubJOsbdGz0zELurNmuKkR3zIDwHLG2Ufcda86lXK8p4sTdEo5n54UoOEKyg9Sodx7V4uPhF8pascei+8TfFbifi+Q21bXn7ZYwlLb6W16Q8o9ckJBI7aem1YFq5XJmwLt/wCMvqhLxrhB9QaJHQ6M4++K7HL7VfZzuT5EAFK4zxW4lSikhKFAnAHVWRXn9wEd5SV/muEDByOh9hU4eXIGqjsl2ZiOW23ZS3FZ1chlJCAfcq/tVw88qE0uN8OIqCBpQknJ221ep6nelO5ZKfR0wqMLGm4r78Dnqk/DMI6FLQJWT6bjNTypceAhKnU6teNOkEoIHUkbVzyp6o1V9lRNeuJeQytAkFShq5acp/b7UkpcxpxDavOyoELwnG4/tVx46MnyIIfi/CainmSzhIWvO++Nv9a1Pw8S5wWoqX3Ryk4QEbgHc7DoD2rZZODt9BBJ6K6HBu8G3PplBMlvRhCUHOjJOR+tUXxjy+c0/wBEghCArp9cVyKcMjbiW1OCpi2lSEXYLmyFEqTlAJ8oGNvuN69a8PrhwUzxfck8ZQptwhvp5DCoMlKFNahjVgg5IOD1reGRRyW0NK0kSZVvU1f5lvhXFbsZlehia/pU0UAbK3RnBwPb2PWnjKB4TmMyWzaOby0q+BWoqkY8x1joE5CfL1yBQ/LVtI2UGnsd4dZtTdwuTgnGTeDFdDC1+RAcWgg6ieo0knp1HevNL3BjRYHIQ6tx5C8qSletOD1+o6muTnKeTYTilDRX2qY81xEmO6sPeVKW1FJIx1Az6716/G4oXBZfjp0sPgEKcYPVZOMEddgcYyMelOblF0hYqa2fKrjM+4FyI/PaYhx4B5k1yTlJASpaEAd9RyMZ6noBmsxPsn4c5IYhcQsTlFQ5vJdJbUjbGSNtlHGDt3B714WFrGqo8iW9npHClkmOWmILfJVcZcqa22lh9khLRI6hYyMYIyNtiK9LvXC8ON4V3i0Luwbu5dadbhJ8ynVFwaY6GVDmYCStRKcDygEk6RXDPNGXkRjFfN/2Oni/ps8NtcqNYbnDmttB9yK4tt9CXyC6haCNgQcEBRH27Het5cbharjoh3COqHNZiuhiG4pLTWot6EOZSclQKQVbaifQbVeaMp5Y5F67X4MU+KoxNwuxXY2OG7MthoreUZbjbScPKChhOrujyhRUTjIGwCRnWR27W5wXd5Dl1cjrbiuNsnkaQ2XChBSEEkALC1nAOwST0690nbSro1TTe2NMwrF/hDhuFf5r1qMqEZqFsAvIePxDrKQW9Axs2CTq6Ad9qqL+pUDitUFE2PLsymkaFMlK0oyQR5sJOoEYKwAdvQiuRRm5uLWvRMqjtHqfAa2uK+OU29aUO251ZcmzJjyEIWkIwkJURqQQOu5xnONwDb2niaw8E8YXBrhuxQ3ku3FRjPvIEmO5pUNKm1nTqwdQHUYORgmvJy48ynUHSXf5NoyjVs0TnDsS9eHUnjG7XZa0SH0sOwVuuIfQrSvSQEIGNXLdCdWCQlRzsTXmcTh9uV4tQLla+B5Fot0yEoNtzJ4luJU2rzONlY8mcBKSpOACSnJTkSsjxY2k0taX5NdNU1ezc2e/3qJw9f4cB6JAskdSn3bbPjqkpklAKwokpIIUF4JKhke2BXzvxxE4ZuFumuW61CLf3nuYEpLiiSTnI9Mjtv1333rr8J5lKMlKq7/KMJyT7NdwZwbxQvhUusWyTIDTC0FpDSkpbGgJU4vIJQBqBycasAZITgamxeGl3kylPu3xxEONGy4GGVO8levWtHlCiQAT5gD8ysYAzW2bzMScnHd6LjjlxTY5cfwSx2qbNkXNp+4R3gw1bGGHPLkFSXNYASoZSdtycdOpGAtlzU1PXCmt4YW7ll1kqK2tQ0pTkDBA1Yz0zn13fiwlkx8+n6FJ1Jey2uNzuTc2JAti5aZDwKQJK1rdBH8oIA1augH+xqA/qkQocHTFlOOltbMYEglQygtkats6Qo7Dck5zgV6WJRSRD2rLGyWyIttx386Pb3NSg0TgKUMpUkBRKjjKe+fN2rQRbPZ3rpCVBuEaJADoS6FKWtCSSk6NQGSUncjHlyMDfbPJObk2loqMU/ZMjWu3WyJIaROblM6kam0rGh783TobJTqyCkHASVhOFYNMRbLY1XCJKh2xXxccc3ml8qAJJ8/qTkHdQ2ATXH9TIra9l8Va/BtU3uVLuLEGRLkRXXG9CCMLU0NWxClDGPb0371QTOI3bPYZE2WuMzHQtKG0NyA5JfUdWFKQPlBG5J23xXEvH+stdm2ZKceSDsfEKLrbXXoclxxSCNerBytWTj+v6V6A1e3IdqTGdU8SAC8CsqTr+uOlcOXC8cuM1s5Mb9kuBd5YiOpWFOha9JBBGgf3/wBauxdymKgBKmgsDGolJyBWf7TpTZom7k6llQzqd6IwfbGfc0EuNZ75CDFys7DiE5V/2xnV0z6j5j+tGPNOErRpxtFBL8MPD6TDS9+Dphz0gFt5pOFN4GAemDjY9Me1eUcXeAcd+O5Os901yNyltxsBAzjqRn+nevawfqGSM7nsiXjxmtdnz9e/DDi2za+bapK2wBqUlpXc7EbelUdtYegvvRZsRa2n0hKSoAebIIwSCM9D9hmvqI5seaH2s82WOcO0RG4NwmrQFN6FJcKSp0hBVjc5yeu/3qJJUzzG22BhKT1UNyd963i03SMyWzNUywpbSsOpSnlu9VN9BgE1pbXOcmodIcXNkqThZdJB/X9hgg1E0qsuLd0a+DI5pQp9DIWleHFklJHl6dPKcDv+tMyY4jXMTMpLmoHSs7b9jj/XauWCSkbtWrATAnP3mPLaj6krJKiF6QR3OR2A7U/doTzU8oSBIbOQsNqJUjAB3xt3+nWr+rj+ooi9EXhuFJYmKeTBMhxpQcBWQUkYOxB69R09K9FtC5VyQsqbMJakHXHLflQo4I23+ZKsn1rDNjhkzcn6Rvhx85pF2ngO0oflT3GkiY80Q7gHRrwCnRnO+R022G1T+HOEo8a4GM2ph1LjgckNIUVJSNKgT33ysdcbZ9RWqyUj0lghCSo19wZbVK+GSwGCr5UnZCgknyknrvj9M1kb1wbHfiBa0BRQg6ykhXOCU+ceo8u2cnGT674yTXReTGppnnVq4Zbs3FqItxtmuKYavPHSCVKDex6ggZ369vtU6Yh2AzDXPkhZW0lLS23PlwSEDPceXY+nXGcV53kTcsvFnlKHCJVzr20u5xXXSHmyj8xTKNOUAj6acDHQAYq1kxJCY/xEJoW1+Q6lKuW8VIW2vq6EqGMYwc5Sc5B9oX+XFRfsjcno1qnyq0QID7jXJDClOso1KKySCHNyoDOwx5e+Kysi1MOctiUhaY0dtS1ulOFpTp1YznJGpJxnG3p0rkxtxmbNJoZsmtd4ckfEG3qcP5aUNBQd075wTjAGBgYO/StHa5Jtkh1ElhhtListvFIATk4zpzkjr0ziujK7+1dkQdEOSph/jCG4xKUVNPBatWS2lCDkAoV1HbPTrWguL4clqLEBxiM4srQhTZDQHXbtivof05ya4v0TJ2qSKhxz4G3vXB5wree8rDWe+D3B27DB/wAwobhOVFjCJ5EtlGskZyNXYZOcdOten4+b63kOPpf+DJ/aiDbJQVZ5SSVags4xucY9KnRZCoz0chKQSSopUnrXszri0QpaHJlxk3F0Pofw5qTrUk4J+/6VYsSmZ3FEWLMkrSnnAu6FYTkDcY9Nq8PJFSqvRSkyvu89bk74JLYDLT6kx0oGMZJxjPXPXIoGmFs/MCtzG7OfmV/Ws3UY0/Zn2wi1LW6lDkHQkKyvcYG2x/4KzEyxJYCyt5aTzNeFH5fTb/Wtsc4x0tlSWgGbf8HZ35apjUx0r0NoQ3knrnqPLvVFHD8+8ITIkqj5Vq1KBJPtjvXRak3KjamqVmxVHbERGhXLS3gkYyM99vtSq5L7LqSdKQNQcA3z6ms+Fo6tLor1LdaVpYW484kDSkIwkbfKM7H1p6O5y4jDjygEqCivmYyMnGPeuGS4RsI25UEXrUJaFus8kNjyIA1EE+wGxP1qdEYjQWFTyrUH8qQ2lWnR2AwBv09q5JZcrVP2dajj7RWO3lth/llxCdZCSU9E/UdKzU+3ldwMhqeG8pyrSknGemB+m9XD7HddmE6mqsZFvehFlxa/iVDzKOrc/b9a0LMlEW1eWSyh1atRLbf5jSTtjOOta8lk6MkuD2MsuvPNh6M+6ktOAHKyQkdU5PTfGK2Tbz6OHURkuILpjrIWXNQCzjzZHUkkjB+tZzglRtBspv8Azm036MqU8wh7lg6UpQ6CCrSQcZHQnaqmaCq+vfENl0pSS4ok565xufQ9OlaRaszlaWykbuj0SWpOk8lD5WhYQEL3G3bttWqNwgu8MN82aorff8rZBIWP5iSN6qUX2hQkndnkto4G4knPSHeRHHkylUuYhpCNAySoHIwAN87ACj4d4NjOpuMu/wA5LDDLa1tBl5Ky65/KgjuVHuOxr5iflwlB/T2cEcTtNnsHCnHMR2ZNslsjwrU222HCpiOlvDSG0l3JIONkHUonufUA+bXW7MPcYG5XSTKeaVKBYkxXih9KWklKMOLCsE4QMkY2GBttzeH484Scpds0nK1S6PK7hBmW+XCNyLiW3EpdAS5lYQTkZPrj+1em2GLcLnwnfLhEtUZuOHR8Pd7ksuyEDGERkEgJUogjJ09gfL0PsZeEsaldI54R+5pojR5lwtEWK/Khx40J0AqjtpWFS9KdJ8xBOFajnB0k59ABorWm5yW4ENNoLl3nS9KbY7FU2rKcgFBx5Rv1/wDSc4A35MmNSp2aJv4PTLT4fum6W6HxVCtyl2m38iIiS9hmSyp91xSNSAQFa3lZWFDCU9gCa8cudvYlTYkmVFeTY1OKQtEFnQywsggcvWcb4SSdtsVyR8p5MzSdJKt/J0yiuCVGVmSY9t4pmO2R2Um384pZc5oSvTnBOobbjbbsa03B89208axZVnbKltoC2SHFDQsDBORkgn2/z9q6sy5YXy1o5I0pHv8AZvE65QX4CXbHKtE8pXIW7cHUappK1NFTQcbTpbBUofzABJzncUszxAuFyeVMi383RT8owm/hkrHwWvU4tbYBxjWTp06gdJB7GvmpeJL6jv8AZo7llVL5GLhHlvP3VFqtJbvshoMOMoIEl1AA1IU0lYc1LQlKSpJUnJUCBkmsNafD6fI4kaebhGDLaQEoekOZAWQTq0pKhkDJ83segzXf9RQxcU60KnOWj2l/jy1W7hq6pkym4kGNbmIL0eK0mK8XHml4UholJUC2VlSz1GB0xnOzvENTENLFhtEKJGFmVDj8pDZUVqTpDrqlo1aUp8wAVgqSjOQk45seFxab67NJT+3j7PLLxZpT14euEuQ29d3JB+I5ettCVkjQQkA6gOwB9h1FZO2SbapyZJlW5Tj0JAU042/pUBnBSUp3OTk5O2dIykbn3sMnLH9vow/Zpjke4Sp//XpZMtXLP/USGAstkHdXUkDYnURgfQ1SQWIbKEha3ZExDy1OMqSCApJ1EoWCeqckkg9PuO+KpOK7Mu0WUq+yRxS6t1cYOMNKS4vV01YwAO6gCeh371GkOLZW7Gjvoek/EKQ7hKeY47knGk/MCfTO2O+1aRgklQrb2Wse+3KFYI76lJfgqOE+RStOVebJ7dDsTnPTvT8ASnWgFIdelLU4VONIKglAaCwv0/znP8oG+MEjl+nGNtGibtI1luvEKKwuNIn/ABAC/I8CA4lZCNwQrKd0+o+XOKyLr0WdxOG1NmOhzyOB1BXkDrucZ7j7de9LxlwlJ/8AY2lJNKJteEOF4MXxAkYugTLSkKjpQ0ttBJyCPlxjbGc4z0Jr0xhIC3jIRocRjUQvJOD0A/Svnv1GU3m5NaoPpKCTRYlC1tshljlsqV5NaiSdt8jt1qatqSnlGS2h1tCQrb/N0xsc/wC1cEZplrZPVKVEe1tR1E4ACSMkZzv+lSXDMERfw6ViUSlJ3wojbb9DihtPTNE70QnX7k0gomOkhKcLT0OSc7ftVqxPlOWxxKQ46ysEeY7p7jFX10VFyiyyYucl1DauXhaV4CsAhQG2CnuCKWdw9whfQ27deHIiyFklTQLeVEYJITseg7dqnHny4ncXR0pqSdnnvFPhgw/w/Jj8LMMpKjkRn2knO/UKxt17/SvmXizwx4i4ctLT01tvoVJUjzbKVpAUR0x6e4r6rwfLi1U+2eVmw7uJn7Pw+VwnviyplxJW0htbY6/5jnp0IAxmtXabFLjcPpZSWWXgApQZScjAG+fXAyT23xXp5MlnKoMhOifHsxb+LStLTgLOklWsgg4374Gceg9gKG5x7kqzhBGhBKS4kpwoJH1z6A1pjcXTK+6i2gSzG4HeS6+UttqQklKhg53OUk+bvg9OoqzZvSpQkpZTy4r6sIWHEhQRpB30jc5B6k9d+9cc8P1Mj/ka20ja2UyEWdcaRHclLOr8wgKCiQpOknAwdzsD22rdJhMNhQbYQl1aQCtCQFFBGB16kaR19K2jDjGj28EUlssFqQzDd57/ADYiWw4gLURuD8uP+Df1qK2ymEx+IJKEPuYW2UnChkHAOP0wdtzVxjR0SpsjTZDPxLExak8tslCkqVgJUck7dc5zgntU1U9LzrLLJcaawVFxCsFQx1/XA9NqutbIvdIhGytTHnZchWuMhXNL61AnYHCQOm2kjHeshcYoYtb7BbafjpWkONIQCsBXRJwDg9/9a8/LDlswnD7Tz23W23u264IXCeaeEhY5IVqSCN06cjoMnIznYjvVlMVEWy44QXrcFBXOwW9OfmBIGnGRttjb1rjk8jnT9HlpJI0NiVDjT5M2HKVMjPJISylGCxkZVnGxAGR6fpUSetMviNyA7DQy/qKVAL8w8ycDrtkBQ23JrCDbyuT1Rq/20V5dcZ4sMBMdxbrmktyX1g6c7agnGDnOB06D61IMpyDzoPwy33FI0h7US4orVqONsHI7b7HeurgpNb/JgnQMn4yPY2b1MJIyG0tv5acWASkjGegP9K3cHjBo+HD1rbeVgu5ChtoBOydttyDt71083HE+P8GuKbhJ/kzFzZjKWxFStUwuKStbq1+ZAxgA9BtnpTquHVyZ6W37gElTR8unUrbYYOdO5x3zg9DXV43lwwSeRrv0ZTjz0g4dnZduUm321bingtSFl5xOpeNgEEbH67dfapKLW2ie+3ocLUfyOP6lFJWOoB6H7V60fPlkir7Zl9OhV5S/pQ2y01srnkebI7AfT+1Qkxz8aqQV7rO+2kn1J9B0rVSpEskxorkSSt5C1SHHvkHRLSTnHv8A7VLDkeIgpYDbslWSp1YxjscHfFczTyTsI/kZXcJKGm1OEpGMlPrnp96o7jJQ9GQp4aVpOxWsjP36VdU/tFKTaorlIbBiMraWQoa1to+Yq74ON/6VLhQkLmOySwlrlAZGsHBGemNiP9a6otNUdWP7qAlSihtZKAtKjjAzue/1qqQ/qnKLh0ISjCQCFY22zXWo1AJSpl8q3vuOMS3+blpshKUEYWCP36/vVEpZZfTOfbXz1pwgDIKffcbf615c2prjF9GtOG2U7mhMpbiXChwr1ErVkAeh75pGkXZTbT4bU4yVaAtY8uPWqaio7Mlyb+0jOtqejOLWkpU2rzp/zE9wfTakZlrN0U6haghtvBPb0H0qFG0Um0wU3ZwqcQ6rWFH+X69dqhsyXjKBcOo52UofN/vVKCRMpNsnMSghxSlNKyvUQANjjbf33qwjqn6EpaGgrClBTgOkAEjp9e9NrWxpv0PRrupqK81IUorXgrJR5UowNkg9O9QXLi+4C6txUcOoGFAaSsEnfB7bfSsuGy+dqinMlLdwShzytAEJ07jr/pUN+6tcxoJQvCcpbSAAQDvWqRhdH0pfbV/ijhS4TocuJayqNidFuJ5jjBS4EpLe+UKzspJORqVjO9eCcV8PtwuE48ZE1Lsl578v4SQVlrSlI0OJ8wUFdlZyCDkAV8V4+SMJqFd7NHCUotnl67LPsnF/wF8hyLdK1eQSV6ArbukAnCtsEbb1r4nETUjw/uFpuxckOhbSY5WpetltJKllKirSPlSMaTkK67V7eaCmoyS6aZyqo9lHKuiL1dmJEwvqVrQma8tGsAHqQARnJBOPtW+sHDMa7W65SbfzVNwZhUmVMcKGC0Fp0hSB8ywnUSBjYdc7Vx5OODFvSsuNSlZacY2o8QeKEWJZ7o5xdeHG246FoeSy2VJVoDTOUgBCcYSDtjGCodZnBV1fjXhu3TbPJkXWA6pSHLmRyY0ZBUpYOr5jrzgAYyTsc7c0snPB92mi2+OTT0bG+328otMaXFuAmGWh5mdHlTEOSHdB3bCdiU6RhRGAdXrgVlL5xZxFc2YdojXKPOg/mR4zL1tLLatPLDiUt4JKcpwEnqUqVgKJrkj48OHKX8lfUklR4+/bnG3nmnpiYalO8stKQfKN87n6dPce9aR+/R4F7tiOGXfg24jaHESXGUx1KdOCfMnKsg9NycjIxjb0vpynUnqK/wC5zJ1s9Es/EVjvgzxMpXFPEU9xuOID7rzTSWgoZBeC9RJITpSRgEVBvjd08N/EJP4JHTEakPB9iMlxbjLrSm0uNrPmIKVIWkpCyo77jGKjJvUujW9JoveHeNrzZ4V1Ra4kZN7ub+pxkT3Spo5DhUMLPmwnG5J7nB3OTj3q53lbvD6oj0+Y4whx5IdU849o28u+EEpSgZAzjIzpOK86MYcm29d7+DVOUqSHWbO1I4tlR51rcYfZQkIVOjFayjBBbBBCU9M6inqe3Wp1wnuwT8FEcNoW3/8Ac6huoBJ6pKdlZwnA3HYHpXTCKdLtB9y2yPFW/chIZN4aeUvCWo5BGoLRjQTgADCsYGBuOlDNswTZpvwKX4jraFlllpOFFYBGpWMlR081OMADIO+4rpg+E6S0Pi5K2ZWY9LgyGGFxX1hlsl/nRgEYVuDpyBpBOx6H06gxBcY9rSFQVvqmnSoukjWoEbAaehGrfJKvpg16EI8lfyZPTKC4y+bH0GJ8K7q3wNSiQMDc7jbPfHoANqjynHJLLbvITzVEqWEE6ug0qJJOTtviu2MVFGRKiyJSFyFsvBwpbw9qcCMgpKSN/myM4G2/Y4q5jp+NfeTALsJopyxzSroojIGCcKJPXOMD9OdpJts0i2x5l56I+7GZTyZS0K1pS2U5V1z0zkgjrtXqXCtqZnLiSLbFnSrus5bZcb1KWsKJUEjGScYPfr2rgzqXH7fZ0Yvumj1ngKNZbj4hJkcRxXkNQ3NCI7sdIQtWdOlSVJJxuB5sYJ3Pr9Bcd8CW9VoZuvDsaLbmo8IuPoGxUeycYHm36f6V5GeH1cTh8HurFGeH8njsORFdUouNHWhB8h6Z+3rinZa21sktLCncpyE9BnoP0r5Pk7SPLpgxkKjhLq9Mh1IzqBJJ6YH6U/zESnH3IsktPhR1t5+XI3/2HvXQpKWjOyDJXyX2UOvhx15WPl2OB19qlwnXW7SGojReCm9QOcAbjf8ATOwq05N9lR26ZJZRMbixnFpVz9e6WzjT6/2q6ZeXJSGyClAA6KIA+ud89NqHycqKaaK92/Wm0yVhwlOABqS90QRnOfc4qdFu1i4msb70c85aXsISsBSdjsc/XvjtXuy8b/I5xezSNP2CxwFZLsylEqEywUrKgnBBJ6k4GxrP3jwttKZqkNvJYd1JSQUZSvcg9++T0rDH5uSFJj4Joxl+8PhbWW3TbWZPISC0wmMd+2Qc4zg9SCf0rB3FJt8pUWVww46EpBIKMBI6J3AO/X9uuK9HDklma4yo4smNwZT222o4l4IR8M4mDBU6OarCQkBIUVnTjUspwMnONxTcHhJSWWGy7yFd0qSFEZBOoYzvv3Azvg7V6mHNxyOBOPHbs20Gxz4/EMdgL58F1HMUtZC9OFZyn3x2z/Sr8S4j90KYwW7pbGEpGdznGc422znbA+tdcpx1+T1ItxVMZlzm1QY51aiWiS0QCUFKxgn06ED1NWaJC021thlSlgITjKsp3Go6d+2a1SpBytmcmuOyrwtlaw22oBTbahutJJ1Hp643qyiQ33W1u60MNNJSEhSsaxj16Yyfr9aZMds0ipCnHVsBhKm2wgN522zvnJ3Gevf+0SVEyh5CECL8QoLUtwedxIz1Pp6e1RKCZu3ow984fKLey7bo7CJb5JW81kY21asKIBzjHToTXmsp9Sbe+uS2iE5IWhSQlvKUJ3yTnsdzjf3ry+Duzyc0XFlzb5ohXKK8lLchKWghRjq5JUnGdW5J1HJOwxtkeglXkOvcUi5219S2XEBCwokqBOFYJI2Oeih6/aueCrLbM9uGjIPQZxWh9qSEyUrSpsOuqSUpxqIyRt16DY74zT8N24Oz2JLThbfYcAdbcx8+4WSCrVtgdBvXoKWOSswVpmouklqQyy2tlbzsdRStb2sLOfNkJIwFe/6etMvuR4lrSylZjsuNFOFBONgMqzjbG+3XBFcFSilE1bV2Rk3Bu4PRGnHN2koTNc0lQUhJBJIPQYCfY9qvZaljiONOgy3lQ23Sp0PrGgowAUgJxpOAO+fepf21FjT5bI8S8So9xlPW9tkrCC24h10hIBBG247AbgZGPaoNrmzbZxLrRbXiJLqjqUkuMoCyUhYUQcpGVb4z0I33rswri3vdEttnqUCDAREMh6S1PbWMtJCcDI69dzvXmz82b8fLQWw2ELOyzpUN/QV7/iNZbbIyLikkaBCx+FDUgJdUyE5J3OcE9/t9qpAhpt9CnncvJOVDVgJHv61tHVpHO2NomvybiUOIbDAQStzQcY7DOcZOwrQW62tSluOttIad2CVadfX/AJ1qMi4IIqy7EBT7zKEwXQGnQkupQoleDk5ST/QgY996q3ISo3xB3dQ4oqa6KOxxgkHY1y+NkvNVnqKKUEynFu/EHf8A7ktJSnU4Ajfc9h6n0ptLDMSKhqOhhZDWtL5I1Kx1yRv1xjIxtnavRnmc3wWqJ41sV+XNYcSy+hYdzsVjBPoRvg/b0qofcS60448pWrYFY+bBOxPasIYlF2gnNyVMyIjOvT0xuWXite2kEnrk1vHgwI7nMMhqKWAlK0ownb17CqzJckicPTbMqbXJkTEKbiutxs63nVuDSpOO3vin5cOMEojw5CWQ2zpIGBrz1BI6nYVly2q9FqOr+TCTGnIUtbbqdRGSEoOUj3p60Nu3O7oRqLQAIUsJzgY9Ca7HqHI5F+/ib9qPb0x3GcqWhtzyp17au+frgfpSpS2xxM244Q6wpOhpAd0ggEeXAG/TO1cKlJ6kdrUVHRLbtltSpwXFtUV0s63m1OhPmOw65PTfpn6VFWmNcXZiVxIyHFAhl1vUltlOeuBk4A9aX3XYcY0UMq0W429Tzk1Otl9DTT6ErUFYHp1x26VnJNqahX9JU8ZDygCn8o6N/r1xW8G3o55QVWjR2/jazu8KsypExl11uV54YaCnNK1qXzCvGCUhIBCs5JSMda8smcTSZshxoyFw4JSlKGEKJT5QQCcndW5Oe2SBgV89i8ep2/RzPJJKgXbzeHeF4tsuNxdn2eI6p1iLIK1IbWoYJGT5cgDYEA4GazKkP88OpfGVEgpSs4AI+XftXoxpKkjGTcuywjylMrQuI6uO4nZxSl5yfTGBjb1r6J4U4masfAdkbnR4zLlwSpaH3HzlbLalABKRshKlIxvuQDgHauLy8f1OOujSEmjGXJ3iNHEiOJFXNmLc20iUcPct7WlOtOrV5tak6VD/ADZ+tO8FcaITxteLpdtT1ynhxbsh6MHiHFnKtKd91rUMgJ264IBSeTJjhnwyj/Y0TcGmJMl8T8TXGapllmyh2S+r/rS20rKkoyFPYTlXkRvgbn0Uo0zDu71nubP+I8yHvisx5LCNSU5ICy3oxknO6VYSrzdzmprE0sSeyN3bKDim+XK/8aNiVrlyFpR5S2oOr1pBzpOB0wBjsE7kAGpfDtqv1mvkoSuGXnXBFW+0ZEdR5SAnUteNv5QT/wDNdbcHj+jyq0OLfK6PSuHPCqZxMlq+X97/AA5EkZU0iWQ29MShIKUoySQFJzjCcEjGaTjOFY+FbmTabs9cbs/GU3ItaretZjNJx5kOrGCAhsg/5UqA384T4sfKlmzrDFfZXf8ABs4cYcrPJ71eXG+IYjlskSYsZplIjF5ACk5SNW2MjfPr0GCep9O4PuJl29yOiVHWphtUlccJQ268SACQpA1KwAk7q2xsk5IPZ5GFQgmkGGbUzbMx24IUFynFPKjahDYTzkpCVApU4sK28unc4GD65FYW5Xttic8pElUdpbZJWyrBIJJzlW5AOMYA83l7VxeJ9TJt/wBv/k78yjCKS79mYkOy/wAOdt8WUkMo5apDLSdkqScpcG2ds5J3ABNTrbdbpCeYbkOM8kYzJb5al75JwcEnqem3m+1e79OMlTRwqTTJshIfLyri2qG/ISHEoII5qcnWdSiAkeTACSew67ViZduUgpWwkEBOvl6wolByQSQdgoYO5B67Vpif09MUyMlRTbee6TKb14ZUlWQE7kpweo3HQ7b08wptKi0Gi/FeQrlhatIVgHzEDfOc4H0+/Y3oz9lbGjOMXFBdY0pChrJbylIz1Pt0rSxZ77cxDi7op15xIbQeaGxtggq074G2M/0TWUqk9AnQMK+tIuE6U2ZEWWprCHgvWR7awAQdtjv6bVqOGr3cH1MrgvPpmtvcx5IQoKCMgEkpIASdgTjO/fNcubHWNtmkJtTVH2PwZZjxCzZuJ7U+029ACRLaiOnU2pGRl1P86STn2OMH0+l7ctMgO648Rtaz5kJezzR2UcYJ69/XrXnx3FM+vxU4J/J878ZcHTrNxjJcbnNymZai6txLRToPUjOok9RWXCocdlRfOR0AI6kd6+M8nH9PLJHmZsajJlYyy4866sSEBlOot6ledO/fPtRctpp0uMLDklR8ycAFOwBzn03rLHJJ2jzWqHhK5RLLrHPSSEuKzkJHU4I+9WEVy2PoaaZK4nL2BB2x6e24FdcJWqYkAHS2+GkSkOIG4WFY0j0H/O1RVmcH3nXnCtokpSWB1AGKpLV+zRtuOjBTrG9NuZw7pU2QHFNkkKAVkjHb96qW259lXMXDeUHFJCkFbh0hWwwABt0zvmvocHkpQWOREftdo1jXF/EzMKO07rflxHeW4S1qQ+3q3UCDtivTmLlFlIbcMlLyPmQgLwoY23rxfK48uUTq5N6OduLLcZLKp6mVuLIbS6fKcdc/0+/1rL3SUZAUtt9lKVasrdWHEY6HYnGRncexFTilLVCdy7MTPs7LdmlfBORUEEBphlnCtJSFEAY0jIyfUnFFHjJFoZjsNtNPtkFxQbU2koI2yDgZBT+5PpXt4lkktMfGpaIbrr0FyShgn4pLZcQULwkEZIJIOcHfsazjPE8T/GTU5tkch+KFOoGwLoONsnrp2P0r0eSf7vRE5qJHkXWSi7JlOvlUflqPw60bjKc4wB06b59qksznF2rQh4L/ADCvHLOAkDO2e/8ApjevYi7inRmpbI/xipobcTI1qC1E615KQFqSASd9/QbVsIkwJtcTm/mNZ0IBTpDY7j333o1dG8HuyyHKUuRJbkHC0+RtSvKVHBAGMjfOf6+0tMiTKiNvvsoEggoQlfzEA/LjoCNPSjsuwmVolMR0rA5Rb1FtK9IQQcjO2cmvGuLXUO8V/wDRxEPN83DmTlBGwUMKxkkDtjqcVzyjUTDPuBSXC2xI1ui61LbWVa22ynDiBkjOSQD1Bxn/ADVLchTWn9S5LjkZGVKOkHCs5CQQMFOMf8FcCmmk2jz6a6KG4XAW3mL1NPLQv/thYJQM4BB9N8Eb/QVd2fiBu53Zwx3GYbizpRhIK0qJGPMcEg79fvW0sPKHIzjKpUOT7mwxdlofW8QpOFKSQQVZOc4wehH9ackrEKKGuWoOoaKkvtq1p8wKkoJ7eU5AIGRWKxvRfIxttuJWpTfxfK5gzrxuU4PXTj2wk561oZdxWqxl2MlEYICxzGVL/NGTpISVZSnA7V1zxRWVX0Zp6KRlajMiOG5JJZWEkKUfN16Y33xg16DCnuxEOBmW350+dDa9KegOcH5tjjbFLLj5OqKg6J0OY49EdTOdQ2sPHlpG2hBJzgfU5IHr16Uci1J+OL8mMFMIGEPDYqTnbI7/AErqwZfpJr4KlFy2W4joUlJKFkI+Vak6QN8bbdfb3qsuFlgyG+Y7NdguLVhWR8422xttuBnP9K3w+Q7MpRGbPY477j7MeelTQOpYV0UkEjG569M/WrGI7b5Jjw7c8WGWlDmvaCOu2k52GcZyd8fvln8l82mujSEElZLkT23OKZMeAGX22GlOtraSSDhekp/bO+232piDeIElx1Mh3DSStIddQVFO3l9Nz2+ozXBiUoRconoxlGX7jO3RfwVpaXaGzKlPPBTklaVDQkbhIHpgZJxvim4EsXOyvypXLtcaOj85S861BOMlJxg5O33Nd8cvc338HA5fdXosF3xhuxsER3ue+9qDKkhwlCR5QB1xuD0HTqagQ3oV1jyri62hKiklaZLgSVKPbIxg9etVjnOKc2yeabojW2Ibdd3FyFtPOrZIwl4amiR3HXPvU65zFtQYjKTlJ/7hCD+m/auqdZZKSOrG+OMhzZ0luFGipbTpUSAEoycdSCPtvWRnTI7cghglai2CQE7JJ7fWtcUL6JySKyRa5K7aue6UkOYygZykVHtzwiIK2wUEHBx3rr1OLSOanF2TGnVrkKBUrGdW6f3rTQ3USrihjUXG0gELDWsox0ViubJBI1hLZMlW64PvOzo7qnHkOAvqS4MklJ1Df0HrvvsKkuS4iOD1MR9EGQpshx1b2C6kHdOB16dDWT3VG37bv2ZRzmRbM0rkLWeac60eXptvn6/pWUuciS6jUorStsEAHrv2x6dauK2c0m6orbdZOHk8FJmoYRHUy6kvuvTlOOyNI84bbCQkJz/mJUM7ZwcZm6yYf4KH0wG23H5BUMKUnQkD5UDPTfqa8bnOUjl0RbhxAzcbLabdGalQmoKXAUuyy8hwrVkFKcDTgYB3OcZ26VSaX3Liwyj/ALqz5SpWkZHT711Rioonbdm0lQZEzia4LS38LAcSiRy9RWBlIVqz32VkE+tHAelcMXiFdHLemQ22lRaEphSozhwQFYPlWEk5xuMjcHcUnJNcfZd1stJvEVue4kus2Ba22o8qOltHNOsg8tKFLBUMAk6lf/t7VaT5NktnCHB/4I2uJdFwlOXIa3VjVzFpSFApAUShIJKdsKAzkKrk4N/behqqNHYOP7PZOGrxGasDdwmzGENNy5ul0oAS7rKUEZQcqbA8xwEnJOragtrt1uuWXJbaIcaO89FakSEANJaGolQz5SexONRwBnbHP9GKlbKu+iVwPxPZrTcbjfrlhF0TqVEU42HAtSW1KSkj0UpKUnpsep3wKvEq5R7+3JhhuVJaktvR33UatKmycEbAgHYlI7HG9cr8NyzucvxQ45eMVRa3nxc4i4u4TtVvvy4qjbiUx1x46W1K1ZAJKRsBk+X6elYeReZsti36ZLrr0dpTAKFbckq3CgOxyc56jarhgWKekEsjmV1yZhJQgPGUklJLSXXtQQnJ2+Xuc7DFaHhu6RYUWOy5YWnV6itEtMhSV6dgUlIO/wAqsD1I26g75YTzYabpkRkoyuj0EXew8SSY7FmgO8MlboDz7lxW4p5I3UMKwnYHcZxunPStfxTwdYY/DCJcO9F2WYCSIj6MOJUoBR1+UBSSok5BJyr6Z8iObL42RY2rv2enjUckXbPLbxZbxabOx8ZbWmCWUuh0EbJ0gg6gd+oGnt0+tfAU1Pmh5tSmnmUgIUF5yvUffHfqcD1r3o5IvHziznknGVSRrX46RaZDghRY7oOhSVPF5rWcaSnSPQHrtuc9jUO4tNGKuyOtEXV0FxLbIJ1J20J8oGgHVtnJyMnY1yqbk1JMTeypet0q3WmPEuLgZY1f/ZNgh0qySEnCe2s7knY4HaosRqQy6X4SHEtnzEpTlSUZ6FP+UkAV1/Ui036JZY3G2XB5Kkam2462081KW9bgPdOATvue+2KqWWGjcG3Y0JaIqClLXMHzqzuCo4H6iueMuUfteiGqewzw6+4ESG4yo6cEgDCQrzDykE7HPY4rQNW+VDt8hcppTTjCE6DqBCiTug/bHfsaxyeRGUVG9kLkbXhvjm82W+xrpw+28gQ3UKlkLCeYgk5QsZCljGe3XTj393R4q3lq1QLuypDdxbkoTNhNSwpAYLoUnKU4KfKE7gnIUcnB0jHMuGG72fReLnksdP0abizjm4XmzQHZtvY1hSVrEUf9xtWMKyFEjSNyDuAceoGchPtz3VqRJYdQhWlcdONSVAA4PmOPofavj/KlznzOnIuctFe+lh60OcvS8lSScNEp1eoCvrVJi4xLvJkuQy2peAEpVkNjbI3O3fvWWBJumeVkxy5ERq9PQr3HbeZ1Kf1a3AStGdtICum/m9OhqfDvDd1W4zq+FnalIS418p07HfcZFei8Eo/d6BQfJJmhbtbEVrQChLiUAEAnPXJz9Sav2H4yo2p0tsJbUcs5yUn6duv1rKU7dxOhRi00vRTKnwm5Ojk5Ksgr7d+4qY1FiSI6klhssDzAFIOrPXP/ADtSc5XyM1FS6K11+2W1S+f+SxyPIlxWArJAOMbnqCfQb+tQbbMRFvK2YqQ5GS2XHHXVgo0BRKinboCo7g9hXdiipJuXQK72NcQXJ6PHCEtJkMtO5CiNnUqHlTqz1Pvg/TFdw2iHeJUqVKacZTFQcqfkFCEjOD5RkbDqeux+tej4eKFfcDa5CPJfMh5tlMdYSAW3nFpRgJJ/lB3TlO3Udtt6p56glZfkKDEVMfSsc0NaCSNiSNJIB6dPftXswgo1RpydFEuIqPIlXdl0yCW22VFYJKSlOsgaTpIKep779qw/EdjiReKHGYzwtq2kh1AeAIWSMp9iCSMketRklU+S2cWRKifHQ3KsrkqQhx0tJAXk51eZOw9euM+g361OTHWl1LcZgBpC0qaBGSFHPUnqP7/pXfjk540wjvZHlc638QyAMyS5JcdwFAJ1aj5sAEY756YNWVpYXcLOiV8elCVO6cuN7oTn0yep/b2rR6eik90XzbLVvdfDqg8htCZKG0JHlBTgjp/6SP8AmaGRcpDwcddSAsaS1zFHVnf8wHvjpgH+lbpUaJ0xJl4RFjuLbdQ5zXCkhCxqR3yMEdPNgfvWbcXGYmG6Ikn4txIUQUhIVgYJ0gEDI3znpjvXPktxombTRjLjd5Dd5kx56USUvIBbT5VhsZCsJyAATjqnrmpMRDDlkLzDamH3HeW3H1nmalYIOodcA9AM7eteTJcEq6OG7f5PL72hlPEDhQ8tbYbBy5kFe+O3U/6Gp1rkwrSpCH4xMpzBCyMltWdtsjHffavZqUsKSOZaZsbil51/TF5zpc2WnGdJzurIGwOTtvVTId+FvaGo75U06wn/ALh/7iikJVuOgzkDPascfG+JTuynhQZjrkt1rLSGmy6OYjckdB064BxVwuYvMK3xnC9H256H2+o22GfoT6VrLhOX8CWiM7HKEvoMEAqVlEgJ3x9SMEDpUluS3GQiEhSneaAnm6cgZGPmV0Ocjb9atLkHQw1KmxVyHBIPw8d5CVtKTjXqONzg7emT32r1mFfUXSCHgpUdlspKEtjVhQ7ddxj77GuLyYPUom2OTVlY7eZhmGEpQcjoeKfnUoIPTffUB6AjGc1oLRqk3CQmSlu4NghKWlJITqz1GT6bgem9ZaxLkjaFSf3DN3mRGras2iIt1T0lXMJaKEoCPL+XgjIySSOnlGepFV3xZnW5MYNfBfEHlxXnAEurcylazkEnATsOm2Kxvm+T7FKrpdDcIu32FLtlhuLztySNKYjqhzXwFgqDZ/zYIyOvzYzjaqmwVWARm3krTLfcOoOKwd1YCc9M5A64/avUxqsbj7M3faLCZlx6Kyh4rEdZLkhoaQ4rSNjsAU4G3U49OlQlPITbkQnnwqQsjUpQCgUpJWc5/wDcBvvXDBdJEt+zFt3VCyXJT4jqaecWgtHC/NpB6Y6gCpFpusmTdHELcQz/ANOEcpLGcJSNwdsFR0+h39zmvXcKgznT2aW2XaPbuInSElxTiCC6pLaNP/p7AbDHXc+mdpV44gjzEaX4nLKEam8qxqOc749arDBzlZ2Qy1BxKNd/XLbSh1pGoK8qgrzJH2NTYlpiFiQVOB/nJxsDpByD/rXZJPEqRUWsj2TEMS4jLT7oPw6E+QDcjBxVQLOypfxjzDoYcQXVeQgddgCdj6nGcCso5FHfyKarTDlKipZUhEIaUp5hdDZURnpuNsHaodqdlC/Exz/+P5UoySDtuPvXRSkifao1EyQuDw23DbQmS444HFODypyR0A7ncDP7VVyoTLzzTzkcIAgqcKArQnm74BJGTgY6d+9YR+TebvTMm9cprsBDbgUpvOw9htke21VK1LddSs9EICMdcCtKo43JmSt3G3FFh4Ql8ORpRTZpSMlCUjKPN5sHtnoQeo26VhZC0CQnlvF5KQPmTgJJ7YycgV5ahFO17MG9gBTkq88x1aGULcGtaEeVIPVQA7e1W8iOTLUnmeRWAhR+U/8ANqtukBs49z4TttgkoXFmTr2ytttmO+UmMoYXzFKKSFDGGglODnKtxtWafnCXKbQVPNsHPMQskAKBJ1AbjG/T3PrWKi+VsdL0SZlxk3FauVlaI7CGm1hxSw2kAAZPb0/5mi1pMpLCJTTjmtKSz5sZUNyOmw6GpceLSQjS8PxlWriLmSbfHuclCCWIsh5KmNedlOgbKR1OCpI75I2OstXCbd0vMth4MynoyG1KW24lxtxWMrbC0EggAYSEnAGNRSAccmafBOVlpWkkVl3v3D13lCAvgaPa1QbYqNEbtDpbU49lR57qyFa8A/LjfSPMN84iTJdI88EMqVkhKCfKCSQRkZ7jqSdq0i24rYNLtFWUFEJRaRllKgXFg/LnYZ9PapMKY00+y9oLUhvzIdRkrWoZx1OO/wCwrSriZ2ky6n3BF3nOzZ4fYcUzhKIkVCEKOpOEqwRskD69PrVW7cmU3FLMdC0Ng+ZxYSV5ycH9CQd96iEXXFjddl2878XLTJhkxYbOhLWhSilCykFZGpR3JBJ3wewAwB6BDuHEc/hxdgUqO5FMlt4uvPNISFoK0AhwkYTlwkjO+En+UVyZYrtraNoSaNdxFdXrhw1aLKm5QbzHt7a0ofjqCkuuKXq3GBjHQZ2O5HU1RxLVCZjsucxKpUh4qeddCsN77rx8oI9MZ3z6CuSMuGJRjqzsneSdj0+Xbru641bZS5K0SFLVlX/fVgJBB0JKd89dsdhjNViFSmeJ1vfElu4OAOtPEpeQVJKVaSCTlOB0VvnGc5q4vgqaMdN6IC77cYdxU0H25i3iM81I0tasJSoA7jtunoB6DeZAuzb7kpp8KLSG1c7lRgG8kbDAV6pyD167da0lD7LJjInocDiFraCoLZzrShvIaRqORjJIIIO47nfG1Qi4ISglKmZkV5paIsPUgqHRJKs5IOU59e9Ywty4lP7tl3ZC+IapUwNtxW08guEgu6dWQ2UHr1GdX+gphy+RkxXIZdTLbccCnm1tkoQoEAgAgdepx0zjfrULB9XI+PSDpbGJ0dhFtVdba0/b3zpW0y0rKAsFe532BSPTp7VZcM3W9ybg9BNoYnSZDZ+JcQgkFK+hV2APdWPStfKgv6Z8nTXv5NYylCS4noMriFUtuRw6wlomJGSp1SWVLUACFYGSCrck4HqaYvUi8weC5NzgyUNo1qdeSynIcBAyEqUduwGnfpjPb5KMIKUYz6f/AJO2OR9lrwzxamZLdhTH2GVFGllnmAqS7p+QZ7Z6ZyB22O1ZdBeJ1lm2mQ5FtUZhxJRK+J080gb4Tq3Bzn0yD23rSMY+N5Fv+xs8nONoyE6Q5ZrY1buJHY60FWIjTCjrGUpV5sEj5lHBPv61uPD26RG1SoL8KXHUGSpLrrIUlajsdKhjBI7da9rPHl4zlDXs5Iz5uvZq+JLu23bXJrEl3X5mnEJQCspwnmFQJ6AKP6ds4PnkTi6Ja+NW2XHnrpHlv4J5XLPm2Cj9Djp1HpXnePgcoPQnNpm8fvlutS3mHWXHACFBzI079tX3I+wqzhcSWWbZVzGzyGmWfzys6ShSuuR9+9Q8ORQ5VoIyqRDvEiNJtTUWU22pRDiml6tSt04xvsnZXzAjG/U15wt5wmSxMdlFxglPOJKeYkEBJwnPlOoHrjCugwa7PG/Y0VOVuw7LPdklu1TGee25pU0lj8wvqSjfUNjnKVHODjUetaewoNuifDOvHyBOtXMGXvMDkZGNxtnv6ZOa9jE4wnvoiLvbJUq8GzXBtbSmXZzTupl5KEBK0nOQtPckegGD7HAqJrovVnccS4wG9SULDuU60g4PruAfTHSumU4UoxZpyfRGbjMRbs66l0uxUtIZlMB8JCkkt40E/wAw1p8w3I1bAAioXGbNp+KQ1bS0+0xAUEoCi4tZU4tWM9iRjr0rFxkpWP7XFmE4alLMmXFkqWhpDgbDZcOga8/N0Ox6Hv6VvHH24N1lJcntqYabShvScrLpO2lJ6gEZz2Br1sWo0c2P9pRPrMJi6RFOtail7Stp0HSdeQ2k9BjHr3x61acKNiRa3FuhUVlpCn3JqMKCUBScp67kkhI33KgO9a8aY4t8i9kutyoipclJZ5hbYbwvBKfnJCvZK0jAPcZrAXm4qh3BMaLyVxUZDZyTsTvkge/Q1pHbKm6RFK7a6Q60+lx5ZSQ2lRKm1ZwdhQXG8qabbYeU2lDalJLYwUdtIOOm2xx6d658ndGHJJFVb3o0y+fHLabRJGA5FSjyp0jrkDI8wGwGMK67YLMu4yG1i5NR3G3NasYXjQoJwTsNz5gc49K82UXLLT/gyvVlDOaE9aHmnC/NxqJdGNR2Ox6EdTVvFiOw7WpuTBbdPM1qdU6n80gZ0gfzAEds967eS4KL0zNLdgRpclxtclaVltYOCNwT6Yz0GPrVTJEmTKZdfIH5Oocps6kBPVJ6dOu/bFbQjFWTKzQRb06q1oEhSpzY0pShCdLmBjA/QY/5uxAuQuF0cedBYShsAqAGNjse52A/5ip+klbiNOyzlzYKp7qFLW7FY8iWFP7ZxqK1JBwdx6/asi7IU7qeayMqAS0kZSNzjKTn+9bYYSj2JvZo7LIKozsR+ImVpdGtXKKjqxkDJyM5HTbvjFaV68QosBDSUGOpw6XG0EhS0kYyDgdh/beubJj5S7N4NJWxlaUxuHHXAW+cvSttGfMobgaie4GOnc7iobV4kNfFc9HIOkKR+ZpSkFOnSCBuT6AHbPSo4qUfuHfFlxf5xiNW+I26qI8tpjyRjkI8pClFI8wVuBgkbjpvUWS9dZNmaucWQ5CKW+XIfcC0odOonRgAAEAJBAAGR1OawhGK4t+wk9uh+K+iyXFyXJenRbjbT8UXoYSlQWUBYSFKHpv775Oa7iESeJ/ErhualASzKQ29JbRkJb5iecpZVhWjWpSydiE7bnGa9JVCLl+BeqBnvxZPFKobsgpXFJ5aWiQjQBuc4ycY2J7VRXS6NRUz2I2pxplkAEO7EqHXbc9u+M9q4sMJtpMznRiW0mI7HdbBluOgZSpkHOQDtnr6ZrZcPPLiKamMQiqYG1/k6Ep0nIyc5JOcemBnavTzNOG9GETPXN64yLioTVBC1kJWrtt6Y716LE4O53Drq5y3mJrUb8tlsay4Mags9gAO+T0rKfkw8ZRXyawjyY6jhS2WlxKZcwTnwlQc5YBSMp8vf36gncGpsG1Qm4ElhU3S1rGQs4KlA7g5B9jgVwZvOyytpfwdMIpAR4U5i9rM91uVb0KHLTEcQ5qCs4Gc+XpvncZ6VEvtwUiS6Gi0uKh0amGG+UgpwBqA3BG3Tce1dEsscso8f+MmV1sr5ctp+EoxXmnm3NJLKEYUoBOB22weo6d6OBHYjyHp/IQktpOgklRUdum+k/N9gDXZjyuMHZCex2eI7MJyS7JU6lTQ+EGdSUq6747gY/WsxKuLsthbWp1x9lkB5TgOEJA09+nYYrqxzU0wcxi1W1c63TZQdKkRx5glHlOdhv8AU9Paqq6QUwX0JRJCytAUopOQCe1a8ttGLvgeZyX5DfD6rc64ZkNTyXEIWo5aVggqSM4GcnO2+BVM3ZZTyuZFaMjSPOE7kA7V5KklGzNu2E9EcjNFhTQBSrOojzZ7j6VdWVUH8VBuK1Ijttl3CRutSRlKAcEDJ2yRTW0Nb7LSycO3DiLiNSHlItkNzU9Jny2yGmkfzKAAys+gSMnsK9OvBtnDs+RYbTCdvT6GyyqTLWW1up5WVpTpGoakEgAnHYgiuDNkcsixx67bNUlxs8lnSGpBjMJiNW8BISWmRgkg9Soknvv0GwwBU6wNOp4gNtuHISgFSQXOXpQsjGSScYHXOe1dz/YZlyjiePaL4pMJtiZFLA5yENushwkYUypQVq09RkHfb3qBa+L7xa72ZNouSLNJcUNLyUY5QwRkEAkYGem+5G+cVyvApv7uvgalXQ9w7bL3xDxy6bRrvchkhCnWZYjFSiMJIUspPX29K1l48MuK4nDki/PfDGMwjCwxJ1KCxtyyABlWx6ZzjNY5M2PDNQ9lJSaPMZqH223CuKplDiEhQCcJB69TnfY7H0q14b4jj2Ww3uM/w8xf5UtpDbcmakrVCQFhRUhPTJIAz9uhIPa6nBpMyvey5v03h13gWMmzokxbn8Q6ZiJAQ2lLeUhsJCfmUcrJOAAAMAZxWXtyQ8pfxj7LcEKQPMkAqI2+v13rlhGSh93Y1VmjkxiIrTy0sR47sdtDSYx8pP8AKd/m3yNyCO/SpUeaDcvw5+7OQbc8AhUnljJGtKgpQTjJ7hJJGcDO2QqczTo10ZQtHGlvkxpC5treYDkJ2W0EuKQCcZbQokFRSdgT8wBV3rUXHjqbc1XUMQ/g4MmQkqXEBTz3QEpcWUADCV6TkYwCT1ry8mCM5XZ3487xR0tmJdgXeAGJESGgMqOp5T+dbgAyQNQPTBxjffr0wMwS2LS4G0yVznXEHWndLKt8gDGQc7bDHT0rquEqo50mhxhyHEjNomw0rmqcb0mUEuFtofN5D3IOT6HbvtbyCJHDyoaY6Y45OQlhJaTnUE6k6jk48w6d89axlyc7b0UlXRnTIVAmvoafU26SlSNwFY31AkHI3HbG+fStXZ7pEmBpnDCnGk4W8VagpSvmSSpQAyRnOrsBW8sbkuSCLXKifmBy1PNNMykJCObDWk5GV4VjBOcZ7dT2qE4iCly6S2LLKbZQFBC1EqcUo4AQATg433wcDttmsofUT7ocqIka18SC8pdNvckx3SpEQyXQOVkn5idsjJ9t9q3cRyaixNs3CO2hxkjStLuOb6gEYPp5T2G5rk/Up4smNcWVByS2ViLwhjiiSsrzqbITITG0uKHVATgEApO2M9gB1rTvzrTNtjDEa4OpfV5ppbwhbpKRuPQ53x07523+ayYpqacVaNIyjVM8tvNmn2W5RrpbVOct5aS3IafwQSTsTgf5T2x9OlbqyKlNXVhqQ2/ohuq/JLQSZBxkJJydQ1dDkCvYy8MmJS9kQUoTr0aGULeUPuXK0293LyFK5roeW2opyUnYYX12yBj1xRMpYun4a1FhrkTYj5Qh5ClNJbCcEhPqARg53Jzk7mowxyrcno3Uleix4ikBpMWW821Mlq/LfQt4BGlR8qQSQNh9/XNYidEbchJudqUyh6M0OU2hRKipSsJSjXknHueo226deFVT9GUrNNZn1fCuw5rkZ+a21zJLygctqP8A+PT9u4AAzUj8MEFqVdUJaAcaBcWt8guHJOcdN8I7Hrj3ref7WvkpVxspZNylvsuPtyiIro1DUnKQASCd8b4xt3+9R5l2kvnkNPISQnrkFPmyDgZxn5ScD69KiOFR9GTmx54hkBaXNExgbIWgKLiUjAJ9D26enWq99515BloazEb0rdSBy1ZwNQ33JySP03PfVKL2yrJLV0bXeHN0aG20tjmpyUagUhzHfAwR6H6bkZht8d5A0rkOAITvpWnOcFRwPTtt16VUY7pD5eyfBlrvMdi1uQxqPnWlKwS6rfTsBvpyr+/QVibza37xekXxjXCjJkBCWikjIOVjb082N/71vHJLGm5bXQp3KGioTa5VjbVNmuNtQ1LKJC0qJW6NijKScZBwNht3xWsu8mM5w/apxivN3FxoyXi4jAGkJQkjHbUB2G6yMkCvS8eby7XRELSpmDkBby2zMQvQpGklo5Bzg7n3yTXs9it92d8MrdBsyozNwnOl/U4UKSlhBIQ4sH5UJBWpSugAB7GuuTVouF8mwLvaJMfmripSYz5CkcpGrHkShKyMYBISCrHfPtnzaVZZrkjkrTo1I1tuavKMHBz+uf8Ahrll5WLHKm9jyRfRjZFqmxJ8R/8ADnlrcJTurbO+AN9twd/b9dvZ4MNNsROmMLmLUguJjLJUonJAIyPMN9+mMbZrn8zP/lcsb2zkimnsKLw6ovl+IswtSjqbLmwKU7HOfMT6Yxmm7lDim+AqGlaUnllLShsRuSPqfTO32ryF5DnPXo0apDLEKNbYgUp0SHteXGkL0owU4yoAjrg/zd+npUuyZDzLkphSlx0jCQyrIOo4Vq1ElWcZ6/6V6GObyfczPpEpK8W9DaFt8kguNN6QlzI8pc1AfL1znPp6ms1LMiHGuTbAExRJ5jpTjA6kAk7k4GwGTiuvDKN0xMzMec8JTCy4p1LagW9ORp+g9f8AStda2ZaF/FAuN811SuUpIQnGDvnO+egBAzvXoTcYqjFXZGeCre5GIS2Zy14AQ7uk6u4zscnG4x19KsBGS3Gclz1BcmW0dIUrHLUFJOT6nScY9/WiMvjtlK7J4nNW3hxQiuuIecBVpSs4wRgFWMY6jbH6bg5ddx5sFtKni2AUq1BIBBGQcd+5/anGL232WWLdwYiOyIciS6EqBKXgPzEAnGMEb7fT61YAyJHDzagHWYbHnVlJy6tWQAPsTnsR3rly62yk7LR1cy4SIfJhOJjOOoStcdHLU6lOTnV1SD6jcY36g1orxap/+DY86C65GLTelxTrWG9AWpCUjWck5bUFHB2AJzk54VKEWk3ZaTlstbXa2LrwUueJbcpt5+M1cy4nAY0R3m3ANOdWoctaSPmWgjG2KZFzjRLStqHJcjSIOmI0l1xTSvK2BlSSNk5JGxye/QVeXI3DjRrSSsoLlAi3VLVxXz3ZwStTxaTqW4FdARk6c5Pc1kbhY3lQFKhMLU6WvzW8DUD3OPoOnuKeDyGnU+kcslZR2dq4Hi2PHcYJMU4KFozoHuMbn7V6S6GVXFcFlhfNU0U/EJGCnAx0264Hv79a28qcfqKmZxvjsq7e840hC5rYfdDpOnlFJ2yCrP09K1ockLx8Sp9DDycpdRqUhsZ23B6nOMbfevN8ir5f7G0G6HblcbfHdTB1uhkgOILRxkjpqxnO2SPUk9KrHZVqYt0hx9x3BbGkuKKCpRJ9sZ2FYYllpfk1bRHtt1kSbu1FiSksMuqJVFCkqG/ck7EbDberRUVhyQYs8NyZK1aClIyAB7jbf2p5JPDOo9gto5+122LOZWl9SVpcypvIUCkoJ04J6Y71NZft90tEaJDaW2y1seYnUncAkEY9cnHvUfVzTSn8D4xToyN+krjvCKhttMFICirR5hg4Cvttv7VFakvzLJJJbC4wUAt9KDlz7nOTnJ969vFJLGpNnN/qKiyxLq3dkR3uZFtq1lUhZOwATqzjI7Y/WquXElJmPPPx1pQpY5esfMFHykDvmvbeXG9Ihp0V/EXCVu4dU9HmXAvvOxA8t9rCmS8vCkNg5H8p3O+/Qd6n8OcLvwbBar3AvsfRIeWl1p5G7JbSlRKhnBTlWASd9J2r5/LkisbvphGL5aMDeVqXcZzymfhpK1HyD5MH0B36jrWhs1v4ej8ExLtNuX/mqnVD4ZLeQ3pV5FLJUNj3wFYwPWto39LQJL2er2a4TL1w2xLS4FQLY81AafekIjJS26pSigpJ/Mxl3CiCfsMV4/xxdIr3iPPFrkJkNBSguQ1IUpDzmohShnfSQNvbH0riwJvO010hyVqyuhy0m6Ln3KEm4Rs6kxgQnV2HmCdh6+pqousmK5e3nYwfSS4VBL2CpOexI2OPXbPpXrVTM/4I67ip2K2wtsEaypSx1JOB/QCnA5CTbSl5tfOK0qQ6lBJxuFDqB6H7e9Np+go9D4Tt12lQHJ9uuPO5QKSwSGV6CSOpO5wNWAdh3Bq+uPEPwnCUC8wJZly2gqPGfk6StpbbhUotoUSQkpdRhQ04KVeXYKrzZ4sc8j+TRSaRgeIbsi9NCQ2UNKVoDzSGdAURkawkbDbGfcmvR+GmoH4NDtlntca7IlsFEiQlnTJbcz1UsnyDSgHYkJ3xgk5covHhp+ie5WZW9Mpi8VTZXEER19cspW62VpS4gqAUleQDgKSR133zv0rLXJCYFzUyyy2mI4cNqL/MSrB3KTsO+Nx+tbY90/RLYzan1uy0ttvojuBQKdZICsEdwNs1ayob9zhtPc1BElxTMRgPYCVJ04yVHAT5vXsegrVUpWyk7Rd2+yramKF2uxt81tQCXCQ6jlgElQKScnyk4HXp1p65LbcYjR4ZTLbdCVc3mBCkq3KtXRIBKjgnIx3JzXN+6V0WujYoX+DuNxHFKllTYSwyw7recJJSSAknI/mI6bZ6jaHPuTcWa3HkD4ZvAKHG0JXyT0OlBwCQMHcg/pXJFc3/ACdLaUSiegOyrjLH4swl5lWdtwflwoYzn+bIGMEbelPMSGG1LjSHnXH0K0uuglRcwUjKc77b7e36E3zqKXRC09kJvXIQpwvNpVHJJbcUdRO+DnBB3Od/X3rTQzFj3SHb5ENpuU+eY6UJK0oAB2ITspJAyMDvkHHXWUZVoa72aWLDjO2KIH3fg8Nj8leU6ipR0YVjYY7e3UZApudImuJzzQ00yrU6hl0r8mcHSc9diMj27CueO3sqiUw1q57luuAFpzoPPUSpIIBCAkY3G+SPTr6cbolF5TAEhkgKDsZRB85OMZzvvk7HJ6/fzsy+rJxS6G3XsrL0/KuEtDiIrceVEfLshlaVclacbAe+3TPYmoLC7vJuclbltcZkl0qUtBTrQE+Vacjsc7Z9M+9Z4ccIwVvoFbZpLUqe1OegzoLUttX5qFPozpUnJOrpgpAJx7elatqFJVbUTHJQkyioEPtNAlCCsHGQoBKhg/YjbriJrGslx2bRtmUuMV2feLixFVz2mmsP6inQvuFY1depzjI7AYpm3326Q7q0h+Spgl5LTjpAWhDYzlIGegGenffPavXWOPBX2jLlxlZruNHJDtvjS0JU58OoIWJbiXAtJ3BGE+UjAAwSoDBJqKxGMrh9yRNdW+sSuYlpkhKs4VkZI6HORjqM9c1liX1MKkluxyTc3QNptEyNfWHYkFTUd7Kwl5xKnChWMq32xpxtuN61kxcpmFIRJnFuPHUoBLTW76ANI1ISNj13HXBO+N9Mtcvli3GNGDVMW4/GZiqSsJUXH3WkZIUSQQdiQcEevXpVW7Kkszvi1obbl5JaZSnKj13HY9Nse9bxiqr2YtkhriBTl0aD4DSWkqC1BGpSCAMpIJGxPf0x9KjTpUyUWHUSHlBa8NxW8jIBySMkjIyBk5zt06U/pRjK6HytEm0JYj3VyWuGXUBnyqcxqKs4wSOh3759Kktx1S5D1z5bgZaJK2y6Ss5GCUDv1O42ANcs8lSckaJaNJEjmPJ+Phs/C8pKHRoVupW4znoMkk7ZxgdabeU5IvSmhMUjXhSlEEqV9UduuO/eubne3s1ukU8y2iXO5eNM1O7rvMJSlQOE6QcAHv6ZFWU7hi9SvD5u4XdlLSX0hqMtb6fzNTqlBJ09CQgYCsHc7ZIr2/Dyxk1FaocU3YPClhlXJtcBplr4QuKc54RqQjSdlKSRuADvjJ/WvRJ9yiRmJbNmbkQEKQzGXLkSAyp1pKAEjSnoDoSogk5I3x0rk83PHDaj2aQSjGyklTypl9GQCsBYIR0ISEnUSMFR699z22rAy+JWbc0023AU5k6HFrIwQob4Tg5G52/3rzPovyq4uvn/AMEZJpItbe5bbhIEx2Ow9yB+XHICcK6akk7E+g7YHvVVc35DSUS5ojRjqJ0ISlLqkZKQc7kdDvnHT1rDHF/W+m29HPJqrM4m5uPvrlLmLkLAVrYQB59sHHqdif0qauVHlKU5HbfW7koTrRnleXvgDbbvXo/SUJb0iVJdGSg3JEuZyHAkOYwUtoBbODjcjtjG/ao0y4uQ3Hbe0UhwqCnEtr1IQAVYHT0UcgHG9eljxpSoxv2WduK4PDilxkofIK0/EhJ2SFfN18uRnb07Zp1N4lyXm2GY6MqydbKAr0yT3HSlKCdys0tozN8tMZTyH7fMbVJDaE/Dp0oUVAbgDO/rkfStLboirRYYqpDihJcI5g3IAGxwk9f9QcVq8jljUWtk1sanQkwpq3rPFL70lwlZjqJU2nPQBQOdx79B13qmkqlSWmWXi2HEBOxQAtIA3BOf2/TeurC1Lb7Jp9Iq31thxeFFhAIIwsnKvbG1RkxiqMp85QMf5h+vqehrvrQEO4KVHZYLxSVuI14/nwegNbnhi+vSVrjrY1shtLZfcWrDac46Dy59yK87ykvp2/Q4tqRutUYSFMxXmm3FBOMbgqx69M9Ns4q+TdG5vCU6xuFRkqjnQ5zQltJ+Yp3OBqCdP/7V8pFtZObR1qRMaeiNW1qEkNBOrmNstq8rak5wOgJHmPpjasRMDAkyC88ZB5/NcUobrUo75/3zjet45ZOVIc2qSDtwhQ2HXY6FuxtBUt19QyAegSB17D/5q4QnWz8XykMtuJACy5pSsAbBX6ftinPly5NnOq9ECOZL81wpKY6sqLZIxqHT03FUt4vJjs/CpebTI2USlISgAnqFE7VrBKc1Eh0kBLnxEsxFtoD810YCc5JHqf22q0jXdTM1DbchTayR1OUp26pydiOxzkUp4pNbGnsZul1Sw6zJetwWELKUuqb1I6/OCME9ehP69aw0viC4TWlMuuNrb1AlS0AqWTt1xnAwe+1d3jYVXJvomcvRbW1sx4CpqVKz5kKRpKkjPy4O312Nbm2J1cOMLSsJmawXFOtnU3k9R7Y9/wBKw8r7nyNsREZEUXaZNWVvJYVoUpT+pTq8+XAKs7e4rPzXPib02tsOw7hzTz1lzCTvgY9NhjO9GNSUuT6omSJ4jrdtL8ZUtySw+kB0qSAQR0047dD9qum5kdjREfQhKM6GnCjUCoDHsPfHvUT5T+1CWnsR8luDzITa5LL5JSn5EIGwOOxOEjr696YZjyETM3JhuW01ISppLjoUVqBGxIPQAAEn9q3hmS7ezSmYuyeHkC5+Fdg4l43uMq1RJ7imYqkMFRU2gf8Adzk6gDoTgDO/TqReLg23hmM1B5ExdpwqQ3KkN6Fymhgd86e+MBW46+kZXKacF0mZJcdnhXFUvh5+8IeskSTFY3SVuyObzCAACMgEAkZwfXptVZDKHIUb4x9YityDrAGdGcbjHrj9q9aPOONX2c77Nw9anTYY0K2yJYtj77bxbd3bJCVDWeh21YG3c9etYSfHbj3uRHafL2lRBIGOh2/XrUYskZtpDlGiY2bk1AQ+2p1bCBoTlR/L6nCfTr+9SltRZzrToQpKSrW8snzkbZAHTPWrbd2mKyDJaaK1fClxpgKI84xv2rUWi2WNUFDF4UstzGjyprCiRHdGSlJTj2AJ3GCdsgEbJukNVZGg3OZa0tPNyP8AomSpKGHFhQTkfMkEHCu4Vjrv2qvKGZKn5CHyW0q3WRuT3wM1HGnaQqGbopqNHhsx29K1NEvkKPzalJx+gB+pqPa7hIiPkpeSloqC1a0at07jY7b9Pv6ZrSSuIPvRJnz1yJ/xLLIbjHCUs6sgADGM/fPYb7ADara0x4a7a49cVxFPKaHJTJUoJwSRnKe429ftXNJNQXEUVbNEvhrh2Rb25TL4W2k6JPLfISgkgJUklPync7gH+1CpDNmW6qM4HyQkxFpAKyQfcdyfv71njnKb4yNZRUei/sCZfEl6mty220FCFOrU25ygElPlSAnGfNvgdxWokcLi28LJFvZantFrU4znL6sbak51dMKP/wC2MECsMmRQn9NGkYNqyGxaXjfV3IMpVHLOlJS5q1a9WNGxKcY9iCDv1pmJDv1z4oUm5xlrVHP5ipGwWNwACvHm3Vgncfao5wTcvaKUZaRp/wAGjwLLMuCXUsONpwiQ+jLYWAFDGkbfL0B7jArL2UQ73cZKpji0SkuKUXUNEtoOkpCyeoByPLgE+tc8JuUHNFuNSSNdb7YY8pciRyXLckKTzFxNCgdKQAnzEklChuQrGQRVXInwLXxcyyVR1IZdSjERsOhDZ8wThZPVSkk+nm22GZg5ZMn2/BUqjRYKvH4rKkr+Idjxw6UtoJKFFWRg4IAVgdc74OfaoUtCIzvxPMXFiKJQgMuggoO/nHXChgBRP67VvBOD4ktWrZcW9UOUyhgOtIjKOhTa3gpQBVgDONKiACNqlWtVrRzXmY8kyWlltpThS4XFEgDUspAAyQO+wPTeuTLGVOK/uNJPZbx44izXZmlct8PNmU20rSrXqJOVYUEkkbe+xzuakzbgwZQiRy6lIcU69oQDy07Z06VAkg6+wzsfWuL6dztG6SURtt9HLaR8TIghcgAtRpIIbOSfOAk7qxnqQfXbFRc3ZN2eW3LZYgvKUWPKguEHYIUkgnTpUvoM571eKMIP7kKmZyey5Avj6EL0wXlZKGH0FIIIGB6DISe2AftUuzPidbzLdZL8dKNA56AvSSOv7Dcg7dK9LIuUOSMX+49AtiU3rh52PdGFOMuMtstOskENJKiAcJ2OMZ3HQ+uasbNw+zF4cfgKuaJbrj61sJaSCSMYHmOw3ySOhx+nmw8l4LhV7O2ONNWxk298PLfb5jjbTenKWwroMY9gd/1B3qgK7glguOMFl1KQE8vQV4GPN0yRsc9sfSu2Elkm2cs0+yhudwXCiIcKnXmFryCyhCCchXfc9c79sj746HdY7t3d+McERZCwwVErUCcYBPU9xjYb+tenCDUG0cjeyNLVNN3haGWRJjr86F/M4n1I/mxv2qyaIRcHHnYzqw+s8tITksoyMnIUM7bb9O9Y5HqkxL8mpU9GaHwzJeQNYRqU4POcjOCfmGP+d65UhiPa1NyUNuupc1FSSUgAjzZTt1IB/XNeVGDlVnRSoZRf5zU1SWnUujScqI/lAPoNt8fTAxtVdH4keYhvx5EH89BOoYwd+mCR6b5+ld0fHi9LRDmTrdemJKuVySZbZ6JWNIxjOe+Nvfp962k+8fH+Ftss8NKY16YccfeWHClLgUVaCc4woJ6KHqfSuhVgnya0bY56ZpYEmdarDChswZCxLYMqQ/rU6k5C0FKMHSckas9zgADcVg5khEpxEflOqS2oOR+SoLCtjusb5wScjpv1GK8jyVOWXn6NZu0hyOr4OwKSqMHJLajrSlOpXUHBAJzkHOPeo0yEifeWpAYDiUBP5LiA2EqA37YxgZxsRjoc1zePklim5PpmLTeikRBnNS3n4SDqdUUhCF5DWx3OMDHXf7YpiYphLSkznpEd5aUKb0lQWARjcZG2+QQd8969SPGU+UOznlaVMfRHs0ec6kLekDQUtFLYI1DAPXGMHGc7damMSuQ65JecU8heBhQwnOMb9+m3sKxmsk0+XY40YOW1zb1cXWI6IrQIUTzClK8nbSMgH1wKz8kKaukJtMXlKKitaUp1A9sZ3BHWvewJcVszZrLVNblwmmXEqXylZVzVEhzsAc7bDAAO/SqqGIkSXcJSJRStvBRobynVnIBOSAMAgfT71hwdtUW2mrI8aFIuvFLcl9lMQBXMSvTo1jGckqOADkDYY36VqHmbY660nHlQk8xxYUrVgHcYOM5/X+szk+SS9Ia32Ub9wEecEpbLMQLCQlSsahjtjc5z26bfSozzOtDTsR5akuZU4hAKlIOQAM57Ak5PTFdWNqDsl7M88XVTUsNpCUsHUogjPUeYn3JFPoubqXyzAWnW4vSHVqHm36n/AC+ua9TVWSnRJe4cuUm5ZfQ0lCSE84EKCye+xyfUn9a20ARI8NBkS2UMjypSjbOBgFW+O+e/7V4Hl5VkVQ2OPdsrJV3DVyCm04jZSp+STjl5B0gDoTgD1zQ2h6cp5p4RFmIhKlfFSSEkqzgqVue+wP1FcaxKOP7iuTvRs0XNpDzEd51Djik8xxa3VYSOmQfrt260xNmQedFKHnH3kMaWG0KBKs5znbHv67neufHikpKkNsy7s6JbY7zwdkrfSwW1sLwUBed8E4Ox9PSqP/FUhpuKGmVFlCBzGyskHc5+n39a9uGDnuRjdGhizF3C2cmAVMlbv5qXAogJODkK/tQXSyzZWGmJbWtxelAcQcaEn74APp1rkc44clNF1yRQuWDiBmf8U44lbRVpdkNrSANuvb96Zu1zu7E91t5wtIcOpsLKSoj67nGxrpi8OaSaI2idJurL9qaNyfkrZ0pCHGEhslOeqh3Oc77ms58cxFuqXoyhJYQrCEvtjcHOMjH71tjg4xcV0Ddlr+LPJtjr2ltK1uZUrOnSeuEpTv6D0rX2hx64WRTbchaXggqzqKcH/KVZ82w6e9Y5oKMbLh3RX3ia60wtLqUqHLBQ6AQVH0O2Tt61nkKduUtIS8UqWDq05P236k1tCo47E36PQrNag5bWJs5xTqEpwWVfKtI7EjGB/vUx1CbzCLS2GYMZhelCQQEN+bPX1IH+9eNLLeRzXSNklVEhE9uC58MiQ3JBbSVlAIDfTGnP27dqgvzZMTK5jCXVvjTrbThIztgkfuM1MIXK/bBto9DvvDD/AP4MRl8S8R/D3ZjkSobzjCpKYR0pbKUBpQSjAQhIABSSnBG+a8Uvdk4zliBCmvx7o2zGLDTaUuIUlxS1uFWBglaeafbcAg9K2xZcfL7kE4yKa5eFcVvg5u4xuI4s5pTqEynecWvg1qJHnQvc523+vbestaLZwzHi2uXIurs10S1JkQwwC2ppJG+ys5Jz1AGwO/SvReSc8bpGfHi9npfEvEVoNoYtlhQ5cbm+EojJ5WnlDpk+p/Ss7L4NgWLgoXK7tuPXVaiVISlRQcnYagCAff12r5/DLJ4kI45fvm/+xvNRm210jHlZiRHHGnFSI6ynU2tX/aKt8dAcjHbIqQxEVOYS5GT5iknQlQUffYV7XKlZyVZBmWl5trmOhbOvOnUMb1UhsNR15dIcQOhOP0967cc1NaJpogOqWohSio9sKOatrU8yzOQX0a29Y5iU7akg7ge/WuihrsSQ2qTl5KNIKjpQPTriq1bSkhWsaSnqO/0pX6EwtaRgZ0K6giiMptyKwxqUghw68bDBOxz3PXqOwqKdAj09wwbcqG1EuCHZS1JUSh853wDqO+d/U43zipdqZtd0kPzpSUMKS8ExWnfLp1dxjAVjGw3/ANPLqSi5dM6oqLdM9Egs222W9b0KK2p91flJVnQc6U4Vnc7KxsR8u+c5zT9xuC726tLrkZ3m55SgR5CcJVkHsM/v9uXFFuTcuzSWtIsIVyjcl1+NEWp1DikElacKBOrURgEqBzuD1UPvCcnyHWnhK5UZD6ymEBh0hAPmKU6cozgd89egO5KH3FKRNlw7jNiLbZYZcixgFvPc1SEAEfModj17pJGRvWYXImw3XZJLJgIWgSU41FWoDzADBwM6QrGPTpVw4SXEJcuVkmPcLm7a5xfl5jLSAGG5BOhIwMEnUR5cnpvjvtWN+Kdd4hiSlMOvSVupSWGkBBxnCdOOhz3xk5NdWGCV0ZybdGsdul0jcQsiVMbY/wCl1xkpbS6lAcwrSEjVvhXfJwB7VFelsXGDqkzHOThKSkdCUjpg7dOnWlGKj90US2+mOOPORyU5Wh0ENrU0glLmMfNnbB+WtipMxHByXBKSt1kFJiyIyS2gqClJCljGV57EHb0zWWbjav2VEz6J91bK0MyZMSPJeb5wQpQKugKtCd8AkDBBI20969CscOSzA0XRDUZbkcuOKkyG2zyyhR1p1K69AMb7nAOa5fIUEvt7Z047kVK37c24++0gTUOu6mktR050qyNKUkAjpuc4BBx6mJMmXRiHJTGdXIDTvNeKSA40CkBRAOogecAY6evcZqNySkQ0/RLTGEt1tyTALMxccEplk+Rs4BSStBAcI3zjGDtg5FSwuOLI7DeHw09LuUyWxy2ySD5NsatwgHGenYA1UuWo2NJXs2Ft4n/DbOiKEuCPlKnHHGwhvBR1SMjAGCrqeoz3pi4XuwIkNzWHUJaSySXgznKiMn5Bt3Uc7de+1ebi8aayNr2dE81w4kq3uzXrRDmRZWUrSEuJTIzyUkkJI3znoTnvt3qquEeRcPj3m3tTSU5LoQSAc5UTpUNyUkAb7KPtXfgjHHlcmcs+TgkZCXw8lFuabVOIewMuleQNwcH3GBsNxk56ViLXYrhOvktCElh91tQZczlJUDtk52BwRnffHTcj1o50ouzkcXaNBcoMl91opd+FdZYUhtbDhUX3U6QFLVgpICsJCdtt8DrUqBaZ1ttyl3V9b80Ky0kJORsNwSkAYHoTnHQZrjzZE40lspRdk52ZEhxuQy38QpR3YQr5Sk7+UnCRtnaquc4A+5raIW+pSmyFBYXgHGM7Ad/Tb0wKWFSSV+ym9GVm3ZSZceU2rlFvACVJHmI3JyOv9au2LqJMeLNnpQ02V4KtBKVA5ztntkfavUli+1NdmXL0R47M6XeXGo+jUopW2oYylHpt2ORnP9a9QtVsRBLkqXIRlhjXvkb4BAGARnt329K5PJyRUVBdmmNbsvrdeuVIW2X23oyglKGypIUnWc9Qeu++enSqtb5i3V1SUNh1TyihTbmQnIO5HXOOueufTFeBkUlcWbuVooVpaRPbuMiS2+pSzyVA5DW3U/5iMdgegq3jyeTZ+bOaeSt3KwMJUUgq+Ygb77dff61Di5xTWn0QrI/x1mMV1m3zBFUvXzGwpLYVnOwKum5wB96ppVkFxuq5DbkeZyGguShuQEkp3Ucb5J6HOQK78HPC3Ka2ZySa0V7s1SZcWAypb8VxZCSpsYUSR0ON+ufXepv4fdYsxookuXAocXqaU4eWncDljY4wOpxiu+TxxSUvZnGxqdGNwjh64aG1Lc/KQhOMYGAdk7jA9uhNVEqFbrVc21NqU4p5KgpnJwUqGMjP1yKvBOSaxx6LddmZQWVB2PzEwUBS3F6hkKTjYA9/96zLr3LnBtGtLOcqBVsf9q9iK2zBvZ6KlEY2RSmHeXqITracz5NJxsRkZ+vr0yALCNLhiMhlpPLVGaIdAdCkLVsM++SVdPU+5ry5xlejoi9mfMK88T3Rnh+w29+4XKQoIagQWVvOPrUfKkJCSSr0xg19leB38IKuO2LUHPFXhmZaJMRa79BtC9dztbo2EdxhYGDqwFKVjBSQM7E9eOCrizNupWe++NPg14Xfw9WXwo40Z8NbXxpwsw//AIf4zjvW7mPTm3WwpuakKKgh5CmVnIIBLmnyhQw7P/hH/hDh8ARPEGDxncl8LWuEmbcm414bkrmNut/kjGnUhxSynCcAHdJSM5T0TycV2QfIPHXgXebD/DTwr4pcPMTH7XxNMlOMxJMdxx61tIeUhtT7yEhohbaUHWUoyV4CSBkfOVztcu2uvKmliLGec1KCWlEHYeUEbEbds/XevMTipKPbZW2jHFgLiLW08hxtLo5JWgAH1/Tb1Fet8KqtfEfHVq4f4i4iZ4Ws3MWxIvjkNUhiKAlSt20AEgkBOE9yDW+WCk4iTo9b8Tv4deFfDzw4icTNeN9tvs66Wxm52KyIsUln8VYW7pSUrUopQMajhQB8uMb0sPwVkN/x8/8AgHIv8P8AFmLgYir8mFoSSYokAtt6s7JGn5j1zVzhGaXF9Ek3hfwY4Dj+Btu4+408WY/A7V5u82BFiSeHJNxD/wAKtIWrLAOkHUDggde+K8T4k4Zs7XiZdLTw3fWeJ7SmUiO1eolscjpf5ulRc5TgCxp1FJ1HtsOlRTi7b2PvRdeIXBP/AIa+O3F3htJntznrBLaaRcWGeQ26pxpDmdBJ3AWAdz07Vv7D4FcSXf8AhAvHjEm7mNbLWl9bNpUzqmXGM0tCZEptWrZppToSrAwNKuhwDisbeRxHdFBL8F7lcOHfBH/CV+cu8LxPkKjtOOtLBhyESEsvtO4UQoNKOonAyBnHWhuX8Ml8tv8AFR4ieHN54kRAicE8Ov364cQriKWy5DbZQ4ktt6xusuJSE6jghXXSa9DHDivyQ7NZG/h24Gk+GXhsxxL422rhHibjSyx7lZbZN4dkrR/1B0tpXJby2gawU5UR646VVcNfwqttcNcf3TxI8T4PhwzwrxSrhyYv8GkXFD73KDiVILRCtK0nbKenXGcUtYoNspbNBwZ/CfZ/FDjTiiw+G/ixB4ocsljROTI/ApENMp1S1JEYJeUkoOyfOQR5h6GsNbPBXiaF4T3niOMp927RuLY3C/4GIBTLMl8Lyck+XSpAQUkbnuK5ef1KT6ZfGtmv4k/h34Ss1zunDHE38QHClu8R7bBXJm2F6LK+GacSkrLKpoTy+bjbQBq1bAHvX2XwA4GtnhhwLxDxr47QeDZnFtrM+329fCsyaQ2FlB/MZJTnI74Pt3rrkkob6Iu2YWTbYkW+XWBEnO3i1xH3m400RXGEzmkrIaeShXmQXAEq0rAICsHcVirjLf56kfDuxpJbHlCgUaAMZOB+4NeLBRk3TNn0Mzyw7w/8WX3EqQAhnSrqoJ7jcnYdahRLs7HaaQtK1nSF8uSNaASPmHce1deOPONNGb0z0bivxCsVr4QkMMxEzbryg5AIWVJiOZ22J3SEaiM5OrFfOFx43vt0uDsq5PmXcVxURxJ+VwBCgQTjqrAAJ6n1rm8Tx2ocp9s0ySXKkbGHxbZ7pKtFp4kYWxw23j4t9hofFqJTk+bYbK6Eg9MkHcUsu4Q5l7cVb0xbsw+4WWTIaQwSCPKVBJxnCc9cA11rG4NfBLfL+SQ1w7eLJfGJkRlqO+EBzQtWpJBJGgE9Vfeva+H1x+KOFQ4uMESkr0SWPm0q9vY9j9a+V/U8kMnHPj9HXhi9xZ4IIdyHi8ux2dDTstMlTSk8oLHznKgFDYDvjqBv77Kx2e9J/iMhMm3KtpDZbfRlJbUUthS0pISE4AIVj9816GfJjWN29uLZOPHJvS9nqN54LuNyvwJahfhiUhbnNQCtfmGdO+c9RtnrXhdx4atF34wnRrO8uPLXJKY8NbKsFKU4V5gCBv0yemc1y+B5MoRXHaS2GXHT2Y1nhyfLQCiK6GEkhS9BxlPUfaqs2SYhJWELSkKwSRgDJ619XDPjk6TOKmSHI77KUtuakrbODtnJGdvauadTcpHITFytKxpUEkqV3I67n2qpfIexJVnSuAHoxUXC4UlBGNAAz1qrVaXUPNMoIOsElShtkdfenHKn2DVMtra6/FjFlh8tyVuJbY2AQVK2UtR/9Ixj61uERL0/8OzKfSxaov5mtLRUCrI1KB2Cz2AJ71hmljTVmsb9Gqk3Fu425pmG25HOpIZeckaTpT5tkg6QcBO3Qb+1VE+8iRF52leteWnCVjyDGNykDY4CsY9uwrDHBPfs3ctD0WHOStAY+H1vuDlIdcSUj39slWMdSK2EWwwW2I8metz4x1zmBphzLIUlOAnAGAoAE5BOdgK5c+SnS7ZUI/JCvcSZKkNup0yYvKU48CgjCAnAOe6QSe+dh07xlCLI4aLT09xyQ7FS3GaSpKUR1IKidlAk9CCO+onc4rNSSgqRo9WmeeNxTNTMcLCWJCkoQlGFBWQoDTgddgCcjG59qjucPTm7yxDkpCGFOpHOQtKskdjvkAgHAPXr716CyxX2nG4vsfuE64MuMT4t0C5jjmgx0aeY1pIKCUpSAkb4GPTttTFrtq5DLulaJEjAKUgAjR/MSemckDHXc1vFxjC6G03Kj1K2cNu224KXJuDCZzUcyX4jSS8AMAqOflG2oY336b4qPE4guF2kOoMVb+kFDac8tAWDsUBOMkagPYK6d64ajlbk9UbpuCSNPw+qSzdhOuzzUlLKQpSlxit4FShghQGkhOE9hvjGRTzKkouq40QCYdSjIWHCUDZJC1BR8gSU5ynqr0yBXHKK50ujqjqN+zBumWviWVdI8r4PWg//AHSQHFnSCBkbDVgkDGMem2HovEMdE8ybxbUTX0OENNNr0trwVeYlPm2yNgrfG5OK7fpKa12jkjPi99DkniZb9xiOGZMQpI1pDmpZUgDARk7HzADJz8o6YpyPxHDVPdbffUn4lGWgyxkZx0wSMbjttudqyli1pEvJbsYv91n254xWmo/JU9kKJwHsDclIVpODgAdDt1qJaX5zcaM8qGqfEjnWpacDAHYgg9DkfT9a6YxgsV3VmTbcj1K3vsMWB1bbsxcSUpQQlawhLZwTgZG5xkb9MnGCaBUeWmA+XJKUxeSFtIIWlWApO52AP2Pb9fKjPjJp7dmzukUM22zZdhS00kR0c5AQ42VakKOMLXudIzjHvnr1oIFn4igxY84SmUNqZWyHMJWrCclKgDuVZOw2J2xvXXzxqGzOm3aKt91q2yEtolC6PsqbczpUlajr6gJJKcd8+2x6UJ4gDLyGnYPLnywHCh5pZSokndStlZx3Gft0q1j+or6FycSiRL4gRNkXKRHV8KgKC9CCEIT65xnbAJPfoaprjMbcixWWSdYJK3MYSpOdie//AMCu3Fjg2nF9GbbrZn1oVzs8wlzIUAPQ1e21CkqaRI0GKV5WW8FQz3059q9F9GZvLTyY0RK1qVF0rHNS0nJcwcpznqDufTariTxE4qKWYDqnULz+UpSR0Hc/cjH2rx8mLm7N00kNouDjMZhDURpKnl6XDpQkNkqOcL7DBzlI7e1PrAuT7TcV1tKwChLoUAha8kDX0yVY7nFeVOKUr7HtmfcZttrlNBaS8+4+peGTgJGQPok/Me+f6Gnip5q+IkRklptKAtpp5kLB9dzknYg7579K3WJ5tvonlx0Ozb1CuyuepAh3IkhLSEgB30Us4HQHbGOlGAmFxE4mLHS/IksFmOHV/lrHzdcjPTbfvtXRHHKEfpyZL3sjMrgIiMOzEsRZBbJQEjDbbhUSCchQ6+mD+1So9wuEWwSJKbkyW3cAR2XNXNJ+YErAPT0GPcbVUoqX7la9DXWjNf4ok/CpLckrU0v8tS1edSffHQkbHsQKcm3mFOnOTXW1S3UIwGjpCRscHpvsBtiuyPj8ZcoiUvkyi1tPMTJaUoJWcaehSCe2ABjtjHemCl9y2lOBy84Rn+b7+2K9TSWyGX1ut8puO7yozUhQUMLKlZR+/Qdd/wB6VGWLzymJCmlLVhbpAThONxgEZzvsa5rjNspHpPghe7ha/wCLXgKXauLUcDvvXdqL+OGOhaYyHcNqUULBQcpUpJCvLuCdsmv2f8YP4ZfDzxRYRxK8JPDPiFCZDkfi2xI5U5xaU/M4hvSHs/ZXZKkihLihM/GvjHjO98UXeLeOMuJ7rxTKtSDDtj9wlqdCUBZIzuRrGpXUk743xVbILqreytlwrkPsAcxCgNaicBOEnpnHX0rwp85zUpmnWj7k8Jf40Lnw34TW7wm418OZfGMpEdNrtTVkQAqSzy9AaW2EqU4cD5kpyQTkE7nC+OHgW/D8C/8AxH4b8H//AAp4ctbAcuUS+cVqlS7qHNISpEdxJU2tCisqSpaNSQSlBODXqwgpwVf7mVnwchpEvjlMWUyuAGieZHWop5K04CtO3U46H75q8UtES4yAmK3JYDwWXSMKyrA1dMHHp9etZZl93H1Q0e3+PfEls4t4B8DWeGbgzOXYeA41vu7QQoCLIQtZLZBSMkAjdORvX165/FJdEf8A1ENSOLrU74Jqueoyk2JHNRH+E+bXyuefzts+ntTx5ccUkKmeW+GfjDbrD/CNZ+FbN4y8N+GXEsTia6Srixf+G3bkX2HnEqZKPyVpRsFE433GelfK9/4phJ/iruci48YROMoAuiJ6r5ZorsNmY46EOO8tooBbCVKUCNIHkOM5TXfKPKOiemfTvjtw54ReI3jZxr4j2Hx1sEf8UAlMW963TgtemOlAQVBnSNRR1PTOa2KP4o/ADhXxp4W4Nh8ESr7wXw3ZRwwxxMbw4yzJgyEoE11cEs+fUvUpQUrKyhJ22A54Rbk2tmjpGJ8K/GPwy8J/DbxL4YlcQJvsng+9yrz4Sz+S6VTFS4rsUDBQAlKUrQ4pKtI1FRHyist4g+O3Bty/+nFAskC5fHeMl3tsDhfiN7SvmfhUB119lwrIwVL1tIXuSrzA/KK6vZn6PR+G/wCITw54duf8N/D924b4c4u4eg8HQ4N44hf4dTJudhnJWoJWy46gnS0oIcKUg9VEZOx1/hZ4jwuG/CfxVtrnjdYIfGNy47XdBxJd7E9Kj3SMplKS8lotENqUSnyYGnSQBjeuTJlglV9lxTMmvxFtFuvPjjd3fEq28TcTXnhKE1a7zZra9BQ5KZfSUpShLSeWpAbSrVgDPcmtJxB/EVwfef4deFuJ1RYzni5A44tV0vsBILbF1VCQvEtOxQjUkpSobKChsNgThzUZJM0o8f8AEbgj+HrjbxA4y8VEeOqoNkvb8q5ucPs8PuuXZqa7rcLATsgpDivnJCSMjV/PXrvAvi3bWf4TvB628NeOnDHAS7PY/hbzb75wo5PdVI5ilAIcLKgPLsQkkd67JSXAyrZ8MXmfCa4+4kgfird2QZDiW7kxHLbcttKzoebSUhSUq2UAcHCt+lZ27Xq3KbZkvpVIeDIbSoqP5qh1B83lAz1Arz/oSU1RvyVFS08+q1yp8GMhtl3CHTGfVsT1TvuARtjfpUG3RozaS66+EvBYyyQckd9/QbfrXYouKZm9swke9KSxchMjGS7IWnmAL3QAoKIIO5zgdwevqao59wYeu7TsaLHaQ2kjyIKdeVqUCRnqNWnbskVrFJdEvod1TTbo0xR5jb6lNAA7rKMZB79FJ/4K+m+GvCORP/hLg3uAwJN+nul5hghOF5c5fmJ7JSCoDbfc52rg8vL9OEWvk9Pw8Dyymn8aGIvhbfEW2GxdpibbGiqf5jrz+pvcAoATnGxznvvXofDUOJwJY5kpMqPImGRlEhQAStspynbfb5h9RXyHmZXmh9OEe2erh8OWGP1JPZlLZwNabjxxcOIJN3de56kuoUypIU09zNZIONk4AGPQmvYH7zZLJH+KnutoSSQnmDJBI3wPptn0NeX5OXL5M1BR2lQsPDEm2QU8Y8NXCYhhucy2EjYlWN9tqwSYfAlm4tVeor5kTteoBLhw15dBGM7jfOf9KMWPy8SlBL9yomaw5Pvvo3kd+0P29AZLJacUpQbAHzKOVfqTmq+ZYbBKjrcVEYA21lKADscgevU1yQyZ8M+zknGEjzu9+GUK5qVItcxCclRWHEHzHYgjp6+vavJrxwJLi3NQLDrAb1OOPAnKz1wCfqe+a+z8T9Q5rjPs8yeNrohBhcZfPLLrrygPimlKykE9ySO+f+dyc+CemSJBHJeUjGsryQtQPUZzXo227Rn2tlDKjxot1a+FkZcSfKpCsaT2I9wauIE65IMlpKn3X1OErlvalZARgJGcjJBx9xXS/ujsSbT0XouEaMhKXk6rgpWhlgJ1BGwIGT824OBtv9cVFEmO5w8/DCm3bk9pceWhtQKCFBS0KQAAQAkEn6nJ7vHfZtdaG4ExyLaJDFxCo78d8hvW2pKwUtkDc7YBAGMZ6HbBrQQJt2vtudjoWX31ua44bxlZykjGQBsnOTjpk1llhH9zNI2/tQ3fpbEK0NxHX3nFx3VMTGcFKWHdSllwYCgdyRkDpVLbRKflofiKS481HWuR5gVv7AnoMnATnG/yk96nHD7NoUnc9G8hToM6BolzVFTQDQQ+AlbSVYKVApSNtk5IO+B1TkVDnWR5ppTFscRKuil4ckIlFwvJUjGhIGyUpAA3wQFHrjA403jnT6OhxuNoyl7tN7duKLXAbjma7IDgbjqTrSdhlxZOQBggdM7q7jNabHdbQh8PP8m5lbYZZClJ3WdzggAgYKT7n2r0oZcdce7ORwldmqcuFxgypNrnocMiRhJ5oSXXchOFbghKRk9Nyc5J7G3Yrgzf21ktyrWwtGpSJSGj5ztgE5I8oOSCMbnHSoTjDfpjqUj1RLEqB4bONR7gmRanNXLekqUh2OkkZSlWdKirLZxj/L03rIzLnbkNuhEdDM/JbD63lbJ04158qPNhOcp3OMEZJrkxw5u1/c65yrTM+4xcJHEkVSltlKQktqSgLQlsqGonzYVuDsk43I2zteN8OIlT5MdLiYtzYWlSXeWRHyjtjfdXXGw379K6XOMOvRycXJj8myygmfboqUNuqUtciSkocK9SfmSEkbZyNs9ia8xnx1W/jppmQqSoNK0shxOdS9RyUgHITq365O9Vhdtr5IyJqjVmBZ2pyXJDRfUIyFugydenIB05SdicatslOcHJqWZU1ZE6E3FtduYWHm1pUFKJOAUEJ8x+4Hf0qZLl+/r4BaRa268rnQ3ojbDCVa0upJCgGwDpKiokA9Rt08v2q5TOjynVs3OK247EUQ24prUdIWdJO+47jGcnHXtySwxi/te0bKVomovcVu7ZWl5BQCssJSDzE4zn5gSQn16AdhTc6+WmbNEVlSmoiOrjmha0DX5TjBAynAxjv33Ncyxyv5Q7SRTX+TdLQ+zLivQLhJmyNKFNjWtltIGe2Ep+m/f6Mri2tdv+PlTUwhyuYmU6CvWsqzpSFYBJySDuO+2N/RiuMFxXZztvopLwoxYr65c+PNjoAQ1BA5mRjGSrbfGDq/bash8E2pn4lpKYzbitXLI2RucYIHT1Ax2r0cK4x6oyezQ22LbnpPMehpERlWC5y/mT0JJzuoEg4AP0qmfc/DpcOfGWEsup1K9FBXVOCBnHqB/atEpOXF9A1StE5i8qkwUNvJS6QjAUSrOe+kDb/f07NvWy5W9bb7GuREWgKQ+lI2G5yeuOhqdY3w+Q2+jQ28vsWpxUlgOvrPmZed0lSQSfMD74FNNuMW+VHl63mVBzmBTiiFZPXyjIwNsbgda8zLB8mo+zXpGRenyJVxcfOFKUpSVOlWohJ6airbHf3zTTLbbiwEuusyG1aEFKM6sdB1wa9CMeEUkc92y9fdlWy0srfdAlLWryo6uNHqeu36DoaVviCWYzUc6ZrRIWht97JHuD1BChnG2361CxxyR5FbToYgmFFKpklxEiOlaC42F77HfGRg/Q1Ev1yjLZDLDiwtB1FZXpBztgY9MVUecsq+EL0ZxD7jLizq8ym8E+ue21SEyHJMQ5TrKTpQArcZxXpdbAtDA5dvc5iQjCiMJSCr1yoHcen2NTGLSlgMvOOhccLCgkLxjfGAO5/T9KwlNlVZbyQ4lmQ7HClR1edoLXr0BOSlIOOoGf0rM3G4h1CVRXErTuVJU2QoHpjP8Apiph8jej7e/gk4t8SWoPG/CPhNwpwhc+LSW7j+K8UTltmMxgNLShtpBccGopz50gEjIOqvqS/wDgF/GB4kXFI408e7NZ4fOBetXDbklqKW8j8tSUNsqcGMnzqJz36EXJWqIPiL+IDwP438DOOmmro0i9cIKQh6Fe41rW3EW8dy0Tleh0aTspW4GRtsPnNriQLnR3lvyVhl0kpZIKUIyDuMD329vevPjgTVF8j13w1vV/mfxCcMXngqwzuJ+ILPNRcmrZb0PLcdbYUHFJy2CtCVJyFaQdiRg9/wBHPE3ivh7+KX+FibwPYLLDsnjHGksSYdg4olCHMiLQtKnTFcKSHFLbStAB0eVepYRgCt8a+muDI7PzKdi3W18eTLTc47UF6JKVGmKf0rOpCyhbZIPqCDjIOP09H8GuEOFePf4rOCuBbih+PY7jKdRKVAUG3FIQytQGpQO+pIOd/SvHUJSyqMXr2aaokWXwL4jf4W8arxxtwTxZwna+GuE5t0sMmfbHobL8ttaQlJW60A4NBUcJIO2xwKkcB+BCONP4FZnFc69zYXixcoE65cD2Zp7S3cLfb1NCUVJxkrWVrCBqTnSFAKGrHtwwwhFWZt7PPG/Cu1yv/p8/+KE+NMjcVPeI44eQy28kxkxfw34kLUjGQsuA5Vq6HGKsOHvCmDB/gV448R5Aedvdn4nhQ4JwjlOMOg69SCkqJyBjCht2prLj5KFlKLezwsqnXRSINrYfdnF4Rwhs4DmVaUjB6dQP0r6vvvhV/DP4d+LsTwl8RL5xndON0tMo4h4mtS47Vss8h5KVJSlpxBW42jWkqVkkgnG+Up64qugezZ8PfwmcI8L8N+JSOPOGeOvEm/cN8aN2WPG4DZSp12M7EbktSVNFCiE6HElR1bFYG/Wvn7xF4F4F4b8Y3LfZuGeLeFYwjtB20cWlKJ7bpyvKkoSNIUhSFJB3xv3FcXkZZRjUe2JJXs+pPF7wX8MfCzw5nNMcOeIV0WzaGpFp4zgxo8qwzpC0JUlBAGWmyVYB16vKSNWxVQX3gnwM8HrlZuFfFqRxje+L5sFiVxDJsSmG4ljLyAtDYbWkqeUkEFRzgjGAD5a4vpRX7iuTKy1+FXBF28C+CeLbbdruY188UhYObrba5kAhOhegBXLdIVvhSgCcYPWrjxf8KfD/AIOsHG7Nt8KfFSALXOciw+IrmQbS4pD3KbeKjHT+Us40nWNWtOCcilFJK6KbbNHx1/C3aLHL8OLnw0+5euE7pJtkLiuOt5K5dskSeUoqUrGyHEO5SdOytjnUBQ33wE8IeA+GeMbt4hv3xzhaNxfKsnC9ks0lpuZJLOSp511YKQlII6JBz27GJfa27enZa2jO8JeC/gb4geL3Ew4Wb424h4Ys/h7JvTdmDzP4r8dHdbR8I0tCFB3UlWE4TkqUkZ2xXzd428McF8Hs2SNaPDDxD8Pbu+4tw/42XhuS2AAeUkst5KSRqIJG4Fd+Gf1I2jOapnitoioW4lLknCF/Mgb/AN9vrW7W9b2WxFSRLkKa5epDYBBAHlOOn1rDO5OaSHGqtnh8+Zb593nyo6A2p8a9Kk9Fd8Y9f2qhtnDV/vUtxuz2iZdltDLghxlvaB6q0g4H1rtgnGNM5/Jz4MON5cslCK7baSX92TmLVfZkuNY4cCXPlNuLcTFjMKcdSryhflSM/wAqc/SvqGyeMyOHvCm3cHvWWQxNiQ/hnVOPllTSwT1SUnB3z2NcvkYXmikurPR8H9Q8fFnlj5JzpOrV0+nXdfk8lvdy4lfuzsG4PXBE9bif+jfS4FkLwpPlO5yCkjbcEEVT3Bi922c3HvMWdbnlgENzGltEp7HCsbVSwxS0jkl+oYcuSKWVNzVxVr7l8r5X5Wj0fgy+NvSfwCPDlTQ5viOhTy/c4SCSKpOJbquVxm+y89IQy2rl8t5KgpojsQdxXhx8ScfIc2tHS/KwTl9BTXNK3G1dfNd1+TS/4dhQrQg35Zss1aCWmpba2nHEn5VhKgCR7jbINZyRa5k8uN8Pxpt4eaSOcIkdbpSPU6QcCrxrM8rjKJyT8rwoeH/VfWj9N75clx+O7rvXZV2ibxX+MfB2mLOnSkZzFYYW6sAdcpAztXoto44mRrwqJfWFw3kEIdQ6gpWn/wByT0P1rLy/Bhljyj2Ti8zDLN9FTTkldWrp+67r8no0WezeYEiRAR8WyyRzFN5BRk6Rkjpk/rmrX4ObMgOOIhrU0GcPlEculZJBwT26D/hr5hYskJ8WnZtm8vxccZTyZIxUWk22lTdNJ29Npql3tfJ53xDwQZ7U123BSpLvmQB5UK32wrocYNeSz+GuIGIK5dwguPMNrDS5KE+QKIJCSoD5sDO+9fR+D5SlHhLtE5ZRx05Ok3W/l9L+R+28DuOW/wDHJsWaq2N+YusxFqQk5xgrwRsSNtzsa2lttkKXxizFtkV19t1BXyUoLrra8pzhKRsfLttkDG1d855JS6/gzx+V4bxzmskaxt8naqNbfL4pbd9GVvvDd3tD8WRIs11jMKkBK5NwgOoQFk43KgBg5xnOatrlaItmsbV1uFpet6JLY5L7kRxht9zGU6FEaTkZOx3A771vWRUqObD+pfpmaMZYs8JKbqNSi7a20qe2l6WzHzbTfIUN65Xiyz4kSUsfDvvx1NtujClaklY3GN8joMb1EtsgSp7tviLbQgNpVqUchByASCVDBwSNgf7jqkqjv0dPj+Tg8mCyYJqaerTTWtPa+H2aiHAdny1xJEJqStTZw46Fk6icpCVJ1EnYA7+oxuaukRbbbDNQltoSnVHWpvU8hKVEo0JKSFZyFKwMDAGeuDwSlf2pndFLtlO/BAu8AQlsrjaw4pGC5rPlylSUlWCSoeX5gcdK9Cm3G5N21D4bRb3i1zI6ESVamxklI3UrAwT3yMAbmsMi5OKZvGXFOjP3C8yETbpBaQJSntPKXGmlaEkJ2SADvg5G/TO3ep9m4V4YD7TbyZhvCk5cKghwYwgBCW1I6nKjnJIxgA9aJOWGH2expLI7ZVz7Jbol6lvsXV2M8wwpSXlJWkrIPUK0jSd0j+laO2wPw1ECRKkGQy9FC0NMuMrKVY1DAGpOrGRgjIzkjsdXkcoK0Qo0/wAFlepkhmewiQJEVK9apKS4taYh0EAKGCnfKM4OoBODjIrMKw/OlM/9LNgvZUgEjLZUg/IGyrQTpznoMbgVeJJRTFO2yZBiNN25zWp1cZUZtLfnUW31g5J1Y6JUAkDGkEJznGaK22ddtsfPExDwf1rcZbeUSDpyUlIWMfy9TnH2NKUqtV2yK1ZjV8Ry7exJjfiHPfThtLoQDpSDgAnv9PYZ32qmcTDnR5rAcjrkhOtsoQVKcOBgJIz7jptv0rvWNR+5Ls5bvsqTdy7FSXAHH1rCskHYAY0j+31PrUVVzcKVI1qCSsk6vfIxsM/8zXSsaI5OzQWe9utXOKXpA+HbIStKkFSSPfGMb7+mRW/au6JjLUGzxkNNKysycJC20pTjQMnCgeuD6Aj28/NhXPl6OjG7XEzLV0lP8QkthySgJA5g2UpQJAWojOc5337VpVMNJkNuXG5uRydIMZEbWSvGSlwpzjOU4Pt96l40ncRW29lI9Gfd4mRLhONPOOkhmPr+TplJBxnKc5AA74qVcOGLvMgypUiLKZbSo8kKawXEjof/AOoz02rp5xhV9mW2VsnnsW9uNNmvuI5QS4kpH5adsY3OeiRt29Kq7fapk1lCWSl1pTgQ2FowonPyggdcHOP9q7INKFkmqhcMXJcGcWZCIyUDSt1tZOobjpjcEjb7003wc48/EjS7uxKS0lOG3MpTp9Aev3rll5MU3SKcWywa4det8kRlyXVRNTpKGlZabSpGc5zsSMAEDfb2qwlSpDLHw9oUIDeA1qZcKHWiPLkE75xjofUZ32ylJTaZrFcUeXusT4Mp9Upxb+CQMOHzEbd/Tr3q7tT5vXDrzE2Lyko8zDgGsLUnylOOowCDnpsr6V0TjF1P4M1fRlJaGo0mKhlgOPdXcKCsY6gEbep9qiKlPRJzkiGeWVZT52wSB9x1+ldEY8lswfZHQvmtlT77mrOUEJzq9QfenZEkIhKUhaihS8aVYBIxsQB3657VVeh3oYeljSlthsJY5Y82N1nJOSe++32qI4FlhC15ca6DA+UjtTiqBiIWkK1LSrSQfKk4wcbVMZecjyGJCXtJ1fNqO/YmtRxsnyLuoNw2kK1DGpSlj5zqJORk4p1u4lUdhhLhTzXCkrUMjBGOm/v+u1YuNIqzTRbkza2WZapSSh3LTqnkrUQBtjT/ADDf67DcV5zOuiXXllpnJK8rUU4Tv2xWONPk5McnokWziC78OzjMsN2m2WU60pl52DMWwtxtWCUEoIJScDIOxwK/Qj+B7+KNjw7em+Fd04VuPFUvibiNEm1y4DqVSDJfS1HUhwLIGnDaFatXl82dtxtK60Rez6I/j+4iuvE3iF4O+C3DbJutyutwE+Tb0NFWta1GPF36AbySdWwAycAV6fav4DPBMeG9lh3li4niFm2lm5zIE9aGZchQyp0IWFaQlXyBOkYA1BRyTyqLk7GeTfwlNI8FP46OPvAbijh+Fb7/ACInxdivBjAO3BtvJVy3T5ihxv8AM0ZwksrHUGvon+IPxL8C7M1Y08YM8KcXzFpfU7CVK/8AM4qmHAlHKeaSpTSw4hadKlIOpPUFJroWKUlXZSXJ6PxcuN/Fyul9m811y4OOl51199S3A4pZKlAqJKicnqSTjfc16R4M+IFi8PP4peC+N5nxFzatalvTI0bl81zUy435dZSkbrTnJyNq8dQlB3XQzdcJ+NU2BbPFO3cZXHiTiKFxPw7ItcFEqaqWww484kh3Q65jAQMbfT1r1X/+VKrF4mcNTOCuELJauC+G2Y1vssWbbWHLmiG2hKHWhJG6FLHM+Q/z75Oc5S8icUku/wDwVSZl2fF3wHn+FXF/h5duGuNYHCU/jx3iq2u2iVBZMdDkZLCI6lOKUAkEOAADOAk6hvUO0eJfgzE8MfEHw/n2jjxzgS53mFcoMuJKgm4xg0yAouFSdGOaXMFCD5QMnO56Yxx8uT7FbqjwvjGVwDEu8Rzw1YvRt61pcjq4kkNfH84HJXrYSlChqwRt2x1Ar3ydxz4CeI/GsfxI8ROBeIpniWlEdy+WyxzY7dlu0hlKUJW4pwc5sKCE6kN57ZzuTpDN9JNy+SWiLxL4+cS3zwf4/iw5F5sfG3E/GzV9TNt04sNR4rcZMdMYLC0r8qUNgbYOkE18y3e63qRfDduJTO4knLWnny3Ja3JbwACQlTiskHQNIO+MD0rnWaOZ70x00fT0X+ITwo8PfCnjSDwRw/4hWSXxHYn7YnhS9XhuXw9BXIb0qfbKiXVlOSQCkZyoEjVtjbz48eB/iS9Y+IfGjg7i93j+3QGYc9PCsuKm3cQhtGlC5BcIdZKk6Uq5WduhGBj1IY4yV2Zu0V/C3ipb4/gzwVwzA4VuVkiWbxSXxa20XQ8gQUpTpipWohbjgCQNSkgHGc1p/Fnxs8K+Mn+MnmuIfGNm/TJL0yHap95hGztvuL5rbamEpKiyhenCclQCRg5GazX05zaXoraRY8N/xbGF/Gr/AIziRZsjgZ+xwLfe7FKQ2ozEx2G2itIyUhSXElaDkHscAmpt/wD4hvCzjhHG/DXiRw5xA9wdcOLH+IeH7hYHGk3a1uu/OgpcPKWhQG4KtiSd/KUxwqfGtF3ooeDv4gfBzgPxs4gkcMcJcX23gy48DSuHly41zZXeH333mlGYejTCwlBADeUhQScbmsJ4vv8Ahzx9Gskvhu8eIrtyacX8Q7xzdWZrbTSgPKwlsZSoqAz2On70Tawpcf8AYW5aPJY1hj22HFQ1DTPmk7SSdWPsOgG1ONwX2obpeW01lZWQs4WvOfmIGf39K4Xk5O32zVI8EuXDkq3zX24weSEdS43sfTFeseGNz45ncMp4Zsik8L2SHchc73xGh4sBpsJ06XF50lOBkI7kb7ZNezCSkj5T/EeDw/8Ap7n5ivHBqXHvm1qMa98pNJfmj03iTiSG/wAGeM3GXBsxUWQ/LtsdqfEUWnUN+QKUCMFOs6vQnIzvVDxvfG7V4m8AcRSbVbbxc7lwjCdmN3WMp5KnVH/ukBQyvy4BO2B0qpaPy39N/TckfKjgyycc33YpSi0pJR8fDpS301a/Lb9mhvV6t9h/+oPdZ11eESCWW2hKU3rTGcVDQEOEegJ69s5pviOw3LiD+HeyW4cRReO+JFcVqjw5zckuIAWypamg65jIwkKPYHA7Uu7OeE34X/TvMy4m4rFgrJWoKMJ84/NyUk6X7v8A/JVwOH7/AOG38P3iK5JS5aOJFLgpD8WSOY0yt3HlWg+XJ1A4Of2rU3DhiTxP4m8LcSptwvFzjcFw7lKglaUqnSjqS0FlRAwVDKiT8qMdxSp9B5H6n4b8jL+rYpUskpx507UHiwqN6uoyfKq+fkr/ABU4J444q4q4HSzB592c4dbbllUltA+Ibyp4fNjYrG42OdqzHC7HiHbEz+A4gb4VatlyTPvl9ErSlhPLGEuOJOlScYIQOpG+2TUtbs7fC/U/0Dyf8P4/DnJyWJfU4U6klNxjHap3JpJd3RuGuL7Vc1eLPFUaXMs/Cjz0SOzPtSeXPceTgZbzgBK9yckHBHQk15j4zPSHeOeH7kyS7a5fD0ZcKY6rL8pAB/Me2GHN9/YD6CJJVRp+geLm8T9cxrLFXGP03L/U5xw4eUW//wBEk2v/AOr/AJem4Y4lcl/wh8dtNW+Ba1W0QEiRAaUh2QS8kFbqio6leXtgbnbetn4e8bXufwpClT1ps3C1mUTMua1FIkHUFaMfzrI2wn19SAeLJjbmnHTrv8Xb/wDQ6fJ8HxY+H50PJcsvHO3GMqbnOeCEYR69Of21+1RT9FfF8RLPPvF7cRaH31PSsw3kL0hhBWeqQdyQRtvXoF+vEe6+Avx6YaEMJuJSGmWin5UKySDk565Pp+teAsSxznxilcXv3d+vjWv7H1Pl+D5cJeFPyc7lwzQSiqUacEny1cmpRlJO9cmvimuGb1On3pu3vS3IsxNrXHg2h2KtmLJwgkKJOT8u/Tf12rzrgqLJheP/AA7GW6EyA4fi0uPJKl/lOY6dd8fQfWvXjKTePl3f+3Wjw4+L43h+N+r4cCqP0U000+accv3tr/U5ck/xFdmtvst2x8EeIB4i4ziXpuZAfZg21mcp9xpw50Kwr5Cn29PYUlwtzvE38O3BfDiUCRNastqnstqOnXuGXd//AGuA4/1r047i03bPhWl42Xx/Oh478fF9aMlGUeL+2EVOXFdJ7/mrKfx+UuT4f8KsmOEf+Yym2W9sFDZIQd+xSkHb2r5v4YTzOLnOXGSy6WCjSG09FAJ1AnGCMk5OfpU5Hyg6+D9T/wAE4nh/QoY5dxnkX+05F7xZfH5MhqHbEOIZ5HLC29S+ahCiCvJ9/LtsAMe1SofF6WLU/JVDWpxaNHKfVlUrYpCjhODj5emN/Uk1w/QTxJXs/SeaUmNWtbDCzcJ0RtnUUKShaVMlvGFAApGk5UdtXUJ6pqvnXJi5TX0pjLaiJ1KCGF/mkJyTknOdx6YAHT0uMfu5P0TyVUR3bq7b1lxhQjuBOdAIwVZCkkgY8w2B+lXzPECFzoctpchMrmKU+6y6Q66RvurBGAMdM9cnoKqePkrQ4zaNEgxGby7epUt2U5KZDi47w8qV6/MMpJz3xv8AXA2rffirTVoebbcYbQ0ASylKs6iCQB8yVKOCNjnzDP8AlHA4ttM6IuiGqXCudotNufhPSA2pLjbrZDJAx6oIJwBkEgnYbiqa4OP/AImYVoe5gPLDzrbygFKCMKB6L6kb7dNhnApwjKLp9ClO9+zBOyUx7lcF25tTMAuEMhLpUpCSQQrfqDkbHr9qamcRLixFQIzYZYSSW1JUVKXleoFRJwTjAzjb9a9b6XNqzhtoxr8pa5RdIJWXApal9znfP3qI9ht5SGXg70OpvIGfb6V3qNaMmQHW32ChLiXGwoagM4yD/wDFSm9C2HF5OoAFWU7Ht1HTqKdasCVFfLTIaSokE7g9P+dK1cSa5H1NgK1qb/KWCAAMYOB0J6jfPU7Vz5I8lRSdGttDIdUXnJgi62QENt4KSoZ2X+o/X3zViX0pksvxIqGxrSuQ4yMFStxnBTpO4HfY5OK82/uZp6Jwed/CpYhR3p0qSwNCGzoU2oqypZITnI2z7HqO2LhtTmLjNiTJkh11IDfmkZGVY9TuN856V0YnGnfYqZr7RY25El38TiclsHZ8SEg7JJ05JKdyUnpkYONqtm7a3EnLipCm1yDoW4FJQSMlJ26DuNQP8uc1z5M3KdR6Golreor8CGqKt9lxxLXnEd8OAkAdTk53wDnJ29q84mXks3BphREkeRPMSggLGAcemRsO/TNVhj9S6CWmSovEXw6X4yHSlpQWy3ocyVjGopJGxAI2wAdx7Ye+MhPxbeuS03LWtWgq5R1NqB7Hb16fStpQlDZSlrZm5IjCMGosd5bDgKpCWnjqUM7jGMJO+37ioEFbSLiuWqWURUgAv8nJA+U7Dfff71qlPjv2Zt70QpAauBRKYSnTq/MQlQCtj1xjqcH1rOu5dmAISpGVHBKwSE/aunGnVMyZFI/JOT5M4O29A9laE6TnHUAe9W+xEcblSSPOCM5H7UaF5XoCsFXXI2oEOBlatgvV5T22p9iNqVHQ8oBsqGlSjgf64p2rNYljc7D+Gyw66SI5+TSfm3+mwqoc+FDaFPLUhvOygnOc03sppJkZd4MV4tjElrXgoWPKoZyNhj9KgmY05cg88gKTkEoAwCPSs6rogkSBzR/0zIbQo6k4ycZPTft9a9B8MuL+MPCXxLtXiPwkzFN5tcgiOqZFDzRStCkLCkEZwUlSSpKgoZ2IJFQ5qK2xpWff/gh/FFwFfv40OLfGDxriSrTxQ7CYg8OxYEMyYVsbSyEvrBzzOYvthJ0hxwE4VUG0f/UW8S7Ozxe1cOE7VeTJuz7tkEqSttduadKlNtOach5CBgDBSSM79MZxcbaQ6ZpL/wDxO+H3GvhH4ReIlxuSo38R/Bt0aUlmPbFobuTCXAHkuOBIbS082SrAOUqK0hISok03iV/EJ4ZeIPi3P4jk26Lw9IlIRzIRjKdKFAb6lacFRO5KQATv1JJ97wZQxtyn/BSjZ5be+I/B7iGyyYypFlhLej8rmx7QhhacDAVlLacq75O5PXNeD+HlstM3xZudkvV2t0a1yrbcY0afImiIyqUYT4hEvEpShBkpj6ishOM6ttVR5/8ATzinETg4o+seFeCP4eo3CFptN84lgwuM43O+Ocj8QokxHFNWeI4pkuoc0oCpj7oaeSS2pbK2kqOU4wF8gfw9LjybtE4lYEm23Rm1i0JvatM5cpUZaJ4WF7NMtmclzBCUrbYB+ff51YY/U5JWK9Gx/wAHfw5Q+NeIheLzw200J0ZFkQ1xQ2r4hos3BxZSWbtKaSsrYjIDkhxDaStvW03zElVFxQx4LRuA43EcdNicDfDDcg8PscWCRJlzkzrW2sOLjzHR52n5xShIYWEtrJZHK1nZ409omzQXtPgVb1+MEuyWGG+1wrILPCb0G9LlNXdpazHS4Sp1WvlHTI1M7KAUFYByJHD9q8KJ3hTYJd5ncPSlG3vSbvdneKPg7lDuHxhSzEagh7zR1NFvU5y1Aa1HmI0aa89xhLIV0jPXS5eFE3+NxfDlkMJ/hBqFNSxzbk5DizpjaHzGZclOPuaWnFoYSXkraSQsnyDz1rIHBvA8/wAJePZF0vHC3CnGUltJ4Wtds4oXPjw1x46HnwJCVPNLS+pam0h54aVpwlTnesmLDCAKTbFX4a+FEPxf42j8ZXyyTeB2uIHXOHTD4ojziuAG5yk6+RIKwSW4owpSXCSE+UrqBaOAvABfDkm/2xm0MxnG7gqbKmX96HcLQpqMPhBEgOyFrkB10ZVkPbrUnLQTmmp8cfBex9uzW3rgr+GZbN5kt3eMygwJkRu4QLwp4RnzMt7DDqo7jqlyClD8l5Rb0traQrR5kKKMPJ4A/hoT4s3Fi78ZcPwuGGIsqE1Jj35+Q6uW7Pfjx3UhjmLUhqO2XwVANqUGAtSUu5rowpctMl9HnXhD4UWS2eNPEHDXibJs77Z4c+Ptjyb1HVEklTrRbUh342M25qbK1AGQjbCt9gfarnwR4B2y9WRMC72CbZfxic3c33uI2nHWmE3GWhhJ/wDM23schEXZEJaVBWsPebKdbUptAurMPxDwp/Dwngi9SbBfLK7xM5AW7Y4D19U1CluGDGfWVrL5djBClSQ208pKnH0hCiANB1HHHA/hYOJOI7F4d3rhMQ42ldgfXxpbmkOo52lwl5y6PBw8vSRrTHUckhvYkPJj5RBOiZdOF/AprxI4Wt/4pbjwtdrWoSLlaOIGHJUGQlhh0K1fiD4VqWHmiHmI2Nfl1lII+VrrIgz7/LeiwPwq2OPuPxYinS8lhGo6EalEqVpTtk7nHvXmyglKktlro8FHEdwetKoSXFONLwXUrUTrx069PtXofBfireOGOCJHDUex2efBdfU+6JsFbxcUQB5gHAMAAdu1elSitHkfq/6bj/W/Hjgy5J46kpJwaUk11tp+9/N+zPs+J14tPiBfJ9vstgjwLk0hmbZW7b/5c8Gx5CWirY9TnPUmpF84tlcS3UXm7NQ5VxUhAbS2goTGQgeVKUjokb7Z96uduKOHwf0DwfD8z+r5Tnk4KFyld0oxcnr97UYqUvddEib4g3+R4xHxCiSYsW+qUnW0wwoM4DQbKSFk5BSMHfqdsdovE/Gd74ut9vhyIdvtVqiuqMeHbIgjR0rX8yiM/MfUn19TQnoxw/4c8DB5Pj54uTeCEYR3pqKai5JJJySlKnr9z0O8K8RXrg67SosdMCXb7i2hE2JcI4kRXkg5SVp2zgk7g9zU3iiXG4k4wuU2/wDEDUq68tpqEYTYTFQgfyD/ACpSP3J61hOcuoo9XD+h+FD9Vn+pNv6klVX9vSXJL5ajFN/CRf8AGHFrEmx2eOpmLcFwLa1DiuNJOkto6FWSck9+n0qh4e8WrlYeB5HDrXDFiuVrflGQ81coSnwtZx1GsJONIxttiufAptucu2eb53+HvE8j9Oh+nrJOEYS5KUWlK021uvl+lekSoXiZfrfxNdpMCw2NVuuDbfxVlYtuYK9AASoN52I6nB3JPtjPcU8S3vi++s3O+oTGJYDMRttgtMtNp6IQPTJPrXRLk1aMvB/w/wCH4XnLzFOc5qKj90rTdKLm1X75KKUpe66J/D/E0O2eF3EfCclKI7V3dZU8+pCioBtWtOCDgbj0O1ercP8AH8OH4ZQLA3B4eusC36y0mfFKySSSV4UrGTqO+B1rzcmbyMbtRTQef/hvxP1FSvNkxuWRZLhJRakoLHp8XS4r+bb3WjEv8YCRGvFvslrtLDNzdS88oRQlcPSvVhohWEjtg52qzmcUORfDT/DNw+GlxxcPiEpbKteoN6cLWCUqB9Ak+pNTcmkq2ejD9JwJpyyTlU4z209xioJddOrfzJt3surb4wXRqI00pm3GU02Y7EwRcSmGf8oXjASO2x6dD1rKW3jk8M8cC62+Elao769KHu5KVJ6A5I3zjbOBWn3yyJv0cnjf4e/TvE8fycONyryE07lfGLUvtha0lyk0qe37Ki4Pw50uDcp8oTp90fU4YsaKUpAcUTp9dQzt17da9KX4zu8NQWI8SPHkXGAyzb4ociEoLAbBytQc1awsEEJ8p8p7U4yyuSr/AJs6/wBT/QvA/VfGjhzyklGLSqv9UeL7T2ltfk8tn+Il0vvD/D1rvcKPLtlufddQ68HC64teSsrXqIIBUcAAY2+tZq9XVfxMVVtkJYYWoKGEDz4I06iMlQGBsc7j2rrcHzXxR2+F4eLwMMseJunKUt/M5OT+NJvX4+R/8Nuj13TOE1iSNCQjmO6AvPYA4OCe2AT9aeWbm2oMJSPiC4UOONHDejPbJ3GSc5+9TcJM9KnRCm3J9y5yYkh55llaQl1tAKQop6eXO/br+1c5NimCQiMh51aQkBGW0tEjBJIO5Ow9K2UKqiL+SvYjyJDEqRoaCEN6sZJUkZ7DPsevYVJiS5Co6whWBy9C8DfTnO2enUjatqT0C0baK4ibb7XsHHCHQ8iO4W3EJBJ82RpCcE7j3zjatFpisShbYry3ITrX/eaWFFAAOVKKeuTnr/l67VwTVOjX0ZtuZrvrLSllhtvmAFJAKwOqVHYdMn749qdN5dgWaUtpDYbkrUAlLwOnB3GnJOO2/Y10OCk6fRmpbMcZ0hLSI7hdRHOFJSVqSlOe4Hp3p26T35kWC3zGy3GSplDaVjPzE6sD1z29K60laszK8RXVWp6S2kaErCSOp9f/AJrm4wNseeLa9aFDCgNgD2+9bWqJuixtbcCfcQzOWlgKGhLi05IGMDG3X0J2zUS62lVqvBb5iXo6SkBwYOTjO4BOO/6VjyanxHXsrEnS+F6SE7Egnr7VYpWVltbSSP8AN7Vo17FZp4l6LNs1hpC3G8BC0+VSSc4Ix1xv69q10S4NTWUzXYuopdAX8Q9htz1VjYknJJABzv71w5MVbRrF3o0Ld+h6Xk29h1LckHnGPkK09OgzgYxn61RN3CLHlqW2ZCRr1uMutagpY3Hm1ZwOuCM+4NcOOGVN3styTZau8QoYkOssqDiXN20pRnGdzknoNsfY1T/jSDcG5KVOYSCNJyAhXYHrnGP+b1pDDJbE3vRIeWH5cZbq1p5mc4OUnJOeg3GCTjrWcuDT676I4bMOK2hZIKVaVFIKsY6gn17ZNdOHUqJkigbeQialLpc0oUStIwFJ2xt+1SbjcVOzW5UAOR1oUFuJGEkn7dANxXY421ZCegmLlIWS0p0rQpZUHVeYpynfB7e/rirFn8ObgKhtpajrkp0qecWrcHbIwcYOe/p9qymmugso5lnegobkR5CSwjCVuEhJQo5wBvntt0Ox2olXFqIXmNaVtKVpcUhsanB/mz6jfHbetI1lS0QtMg5hO2h7XHS3J1hLIS8cnqckYIxjbr1xVWOYAh4aUlPy4G4PrVU1aYMiKSdCgpJSrc5I9KEhRS0o6emwB3xVWiR3mus6MArQkeXO+KmxZLYcBSg9M/8ApTtUPrRaLe7IlXB9phG6igHuABgfXp1x161gkuIQSiSCvlny7ZBohJNUW3YIjpmWqS6tacMDEdtBCVKJJPpuB+u4H0hs26Y7J0pTqUCE/U+m9DdXZGz2K2cORYlugC+Nxojob5zbyHlB3qNlDoe+N9vStVKtTBUSXMR04CkPqStOkYOvVk75zuBg5/X5XyM7eS1tHTFJIJ6ND+MZiyWy+6oEl1vy6yoDUrUpJG2wznAA7ZrFy7Z8VfZhcnNmUG0gFAOrAOnChgYO3zE+nqa6vGyyu5f2CbtnoHhJaLRN/is4JYur4l8PuuuNzHJWENgchwYJJwBnpvnYdKxnidZkcL+PfEtkbkfGR48xSY0hAyl5v+VQI2O3XHcGvpcWRNNIrilCzAmW2FAFWD9DXpdqadf4PjoYfCkrQA4rkAhvvgqzt37bVw+bKsaZn2TJEG3ymnotymtOrcVgZXpeBCTtttjbv369q8zvdhatd0cjNyEhpSdSNasqBP8ALkZz9a8zxs8+fFrTFJGVTqQ6o6SFoONJT0q+TBmLD0t4hyOCkvH5AhSh0CcDcewr2ZSUezIv7XcpkGM1puCuWh3LTW6QodwScD/WtBanmJt+bnqKmWWGQ240sgICydwD/KDvtg9fSuDIltxQfgfMpuVxjz4xMae2FJUpRCk7+XClHG3vgfWpLvEUVlgwHVmM8oBS3WtSk68bbAkEHPUb1n9NzpfA+iuV+J23mLZWqWOZqdC2C2pJOME76sbdelSjcHn7eZK5b0ApCgkYJS4cgnJz7gkeu9dCjCS5UIdjMTpENLpmc2RyeeGnJByRnYgE4O3f6157cA2FMyXJyZDrhUXEAeZBz36ZNb4qt0hOx+1uyo8B59t0t7FSFA4P9acZlvvXBUp90qcWsKLmrKs/8Fa1G20gRLebRJgvvJQEoZRqWlSyMAkDPuf9anWp62oS03yn5CXGMyGEupQVHJzgnffY4G/6ZqXfHQ12VrN1kReIG1x3FvNNKVykkYKQoY3x1P8ApVs/LYlXIBtuRFZwNWp4nI/sKlx3yQeqP//Z\n", + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Embed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is today's image from same webcam at Berkeley, (refreshed every minutes, if you reload the notebook), visible only with an active internet connection, that should be different from the previous one. Notebooks saved with this kind of image will be smaller and always reflect the current version of the source, but the image won't display offline." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "SoftLinked" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, if you re-run this Notebook, the two images will be the same again." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## HTML" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python objects can declare HTML representations that will be displayed in the Notebook. If you have some HTML you want to display, simply use the `HTML` class." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from IPython.display import HTML" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "s = \"\"\"\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
Header 1Header 2
row 1, cell 1row 1, cell 2
row 2, cell 1row 2, cell 2
\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h = HTML(s)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
Header 1Header 2
row 1, cell 1row 1, cell 2
row 2, cell 1row 2, cell 2
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(h)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also use the `%%html` cell magic to accomplish the same thing." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
Header 1Header 2
row 1, cell 1row 1, cell 2
row 2, cell 1row 2, cell 2
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%html\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
Header 1Header 2
row 1, cell 1row 1, cell 2
row 2, cell 1row 2, cell 2
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LaTeX" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The IPython display system also has builtin support for the display of mathematical expressions typeset in LaTeX, which is rendered in the browser using [MathJax](http://mathjax.org)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can pass raw LaTeX test as a string to the `Math` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Math\n", + "Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the `Latex` class, you have to include the delimiters yourself. This allows you to use other LaTeX modes such as `eqnarray`:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{eqnarray}\n", + "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", + "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n", + "\\end{eqnarray}" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Latex\n", + "Latex(r\"\"\"\\begin{eqnarray}\n", + "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", + "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n", + "\\end{eqnarray}\"\"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or you can enter LaTeX directly with the `%%latex` cell magic:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/latex": [ + "\\begin{align}\n", + "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", + "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n", + "\\end{align}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%latex\n", + "\\begin{align}\n", + "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", + "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", + "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n", + "\\end{align}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Audio" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IPython makes it easy to work with sounds interactively. The `Audio` display class allows you to create an audio control that is embedded in the Notebook. The interface is analogous to the interface of the `Image` display class. All audio formats supported by the browser can be used. Note that no single format is presently supported in all browsers." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Audio\n", + "Audio(url=\"http://www.nch.com.au/acm/8k16bitpcm.wav\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A NumPy array can be auralized automatically. The `Audio` class normalizes and encodes the data and embeds the resulting audio in the Notebook.\n", + "\n", + "For instance, when two sine waves with almost the same frequency are superimposed a phenomena known as [beats](https://en.wikipedia.org/wiki/Beat_%28acoustics%29) occur. This can be auralised as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "max_time = 3\n", + "f1 = 220.0\n", + "f2 = 224.0\n", + "rate = 8000\n", + "L = 3\n", + "times = np.linspace(0,L,rate*L)\n", + "signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)\n", + "\n", + "Audio(data=signal, rate=rate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Video" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "More exotic objects can also be displayed, as long as their representation supports the IPython display protocol. For example, videos hosted externally on YouTube are easy to load:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAkJBwcHCAkJCAgHBwcHBwgICQgHBwcHBwcHBwcHBwcHChAOBwgPCQcHDiEODx0REx8fBwsiGBYSGBASExIBBQUFCAcIDwkJDxQUEA0UFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/AABEIAWgB4AMBIgACEQEDEQH/xAAdAAABBAMBAQAAAAAAAAAAAAAABAUGBwEDCAIJ/8QAYBAAAQIDAwUHDA0ICQMCBgMAAgADAQQSBRMiBhEhMkIHFCMxQVJiFTNRU1RhcoKSotHwCBhDY3GBkZOUobLS1BYkNFWDwcLTFyVEc6Oxw+HiZLPyhKQmNUVWdPFG1eP/xAAbAQABBQEBAAAAAAAAAAAAAAAAAQIDBAUGB//EADoRAAIBAgQDBgUEAQMDBQAAAAABAgMRBBIhURMxQQVhcYGRoRQisdHwMkJS4cEGI/EVU2IWJDNDkv/aAAwDAQACEQMRAD8A4yQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgDKFf9qexRt1iXfmnZyyLuXZceczPz2ehpuLhU1SMIRjSKpNyx3Rq1Y0jVmhVnIRjSdOHTTyw4/hTnBpZnyGRqRk7JjYhP8AZ+S7r8BJtxnMXSc/lp7l9zGdOFQuyvxm9/JTE03ZE7pySvYgqFYLe5NPRjmv5P5x/wDkJysLcOtKbnZaQam7OF2bccbZvHZoW6mwi4VRDKxjxDyQipHCS1sMsyrELo6HsO8ou7bF+kz/AOAWfadZRd22L9Jn/wAAkysj4kdznBC6P9pzlF3bYv0mf/AI9pzlF3bYv0mf/AIysOLHc5wQukPab5R922L9Jn/wCx7TnKLu2xfpM/8AgEmVhxY7nOCF0dD2HOUXdti/SZ/8As+05yi7tsX6TP8A4BGVhxI7nOCF0f7TjKLu2xfpM/8AgFn2m+Ufdti/SZ/8AjKw4sdzm9C6Q9pvlH3bYv0mf/AI9pvlH3bYv0mf/AIysOLHc5vQukPab5R922L9Jn/wCPab5R922L9Jn/wCMrDix3Ob0LpD2m+Ufdti/SZ/8Aj2m2Ufdli/SZ/8AizDiR3Ob0LpD2m2Ufdli/SZ/wDAI9pvlH3bYv0mf/AIsw4kdzm9C6Q9pvlH3bYv0mf/AACx7TfKPuyxfpM/+ARZhxI7nOCF0h7TfKPu2xfpM/8AgEe03yj7tsX6TP8A4BFg4kdzm9C6Q9pvlH3bYv0mf/AI9pvlH3bYv0mf/AIsHFjuc3oXR/tN8o+7LF+kz/4BHtOcou7bF+kz/wCASC547nOCF0f7TnKLu2xfpM/+AR7TnKLu2xfpM/8AgEBnjuc4IXR/tOcou7bF+kz/AOAWPadZRd22L9Jn/wAAgM8dznFC6O9p1lF3bYv0mf8AwCPadZRd22L9Jn/wCS4nEjuc4oXR3tOsou7bF+kz/wCAWPad5Rd22L9Jn/wCLoXPHc5yQuj4ew5yi7tsX6TP/gF69ptlH3bYv0mf/AJ+VjeNDc5uQuj/AGm+Ufdti/SZ/wDALzD2HeUXdti/SZ/8AjKxeJHc5xQuivagZQ92WP8AP2h//XrHtQsoe67H+fn/AMAmZ1uOzI53RmXRHtQcoe67I+fn/wAAtjfsPcoi/tljfSZ/8AhST5MTMjnPMjMuj/ab5R5qt+WL9Jn/AMAkntSbfvha35Y8CLVjvmepz82rePGi6DMjntYXRhew+yh7ssb6TP8A4BZH2H2UPdti/SZ/8AhSTV0GZHOSF0QfsRMoIf2yxvpE/wDgEN+xEygIat+WN9In/wAAk4kdxxzusroF72JmUA603ZHz8/8AgVo9qrbvdVk/Pzv4JNdaC5scot8ihEK/faqW93XZPz87+CR7VO3u67I+fnfwST4il/IXJLYoNCvz2qlvd12R8/O/glrj7Fi3O67K+fnfwSPiKf8AIMktjrjd2nrjJi1nNUnJa4HZ6+4LNNXfgRQXBhNeEWq7g68IjhGbYHaIYYDDorqT2WmXl4y/YjXWpYpZyZOsan5lwi/NmWx0lQ3piXFCJQhyLmMB8IiHh6muvjVqz8p2wChrtdnOr+Mi4QjF89X68jOwHzOUvBehoZAgIXgIGjc1Th+gTpeF/ZH+9HQpbZWUnuDrZMzHaTKm86TRFhdH4IqOjGkSeqbAXsJPCN9Zc30ZtrjlHu/m41sMBERZMRACxDLzZX0g50pK0W9LGfkhGKo2NVVJRVuhL3MobuqoSaIRqpMaS8klq3Abadm8trJInCIWZh1webq0/XUo/CZJoRYexMlhGVtIiu//AEVrM56e9nip77HSypGUyllp0idZFvE/KzFLjjDZasyy+3hm5XPoiUNMIaY507PJ6Segkp35I7mQtrU4JCJDQUCxDEaSEhLaEh44L3CY6MPqVnLIxXKK6mmC9Lbvrow9fiWIzPQD1+JGSQZobmteVu3z0IevxLzGY6EPk/2S5ZCZo7muCM62b4hzB9fFXmL48wfJL7qTJIM8dzzGKF6vh5o+SXoRB0eZDyY/dS8OQmdAsRRfQ5kPJii/HmQ8mKXhyDNEysrG+IcyH1o3xDmQ+tJw5C547/noZRmWN8N8yCN8BzIfV6UcOWwZ47mULyT49iHr8axfD2B9fjRwpCOaPawvN8PYh6/Gi+HsQ9fjScGQnER6RnWu/HsQ9fGWb8eb5w/fRwpC8VHtGbDVyDhLorzft83zh9KaJi0SCZKMNXDo4xIadpOhhpTdhs8RCNrjvFeV6lZkHRwwGvaCr7C8RmB5vnf7qPgzvYfKrFJO+hlC8b5Hmj8v+6xvkeb5yX4eY34iBsisLXvkeb5yzvkeb5xI+GmL8RA9rK175Hm+cSN8jzfOJNeFqCrEQNi1o3wPN+16Fi+Hm/a9CT4WoL8REUNr3mSYZkeb9r0L1vvo/a9CsqDSsVnJN3NpQSWshHCve+uj9r0LyMwPN+16Ekqcm7oljNJGvfLnN81Yi+56it2+uj9r0I310ftehMdOfd6EinHvMMmRLLWsS8i+PN/7noXoXh5v/c9CjlQk7ch0aiFGyo9OtVPVU1Fs04SqHEJfFFPcZro/a9C0CQiVV3i/aehQ1MPN2sSwqxVzazjERPX2qVi4p2kRfHtf2vQvJTHR+16EyVF3vyfcSRn06CSdw1c4liUHgxW0zHtf2vQvIuiI03f2vQqrpyTehYzJ21ENoji8VNdOJPT7olrAXnehJoxb7UXnehU6tGbLNOaQjgKzSlNYcwvO9CIvN9rLzvQoeBIlzoRnBJ3IJeb7fMLzvQtDjzfay870JVRkJnR8/LRmHX3X3CF0HZtwnnL0ifn5kiKonnCGGaWaCOOMdGeIwgtUqdVI4iIeHEWcL7dX9tkC90aLji12c61MtUDSLZjfU3Mo6RHM2i8Wq5Mi3GEW5cYYqY5oL2JtELl7VQ05TegPCvTtNIs2a23mFgAp0x05+Vb9WpKpJyk7tlSEVFWQsbPWfEqRLCU7KN3jDnRtOzi0tl2YwgtrQ3bZODwTTms9JDv2y3v7+SLEwXZzZsy0i26Dl5G8N26beJ6VpbtFttzV33KasyPfgtskdRE+FVY603ZnBvj/APm2Y5rd/NBMQ4QNWm2LhMtELWtVvcr+znhEaiIpKZ0t6KtAxT1IvE1cuMuDLm3w7DsuROMsiWFyblB1t77Jsx4uPkTPakpeiUyDjTwiN25MSjZMvti4Qi45Oyw5ojSFWkYaao50rslt1humJC6YuCUs0y5whOODS3OyBFheE4jQTfw580U7m7Bex0d7HrdFnn7WlLJBtu4fEt8iEzfssEw244+5LN+5tFARjmz6IlDjhoXTsBXOvsNMmwArRtaYw3dNmsVNss1OELb826Nz+wH4yXSd5L8/zi9KuynGnaJmVacqjzaCbMvOZKolL9s84kfm3bPPJJx4kXwsu4SZvX1gsw9fXMleaX7ZDylmhjtnnJePEPhZ93qI4j6+sFin19YJbdsds89Fyxz/ADkceIfCz7vURU+vrBFHrT/wS64Y5/no3uxz/PRx4i/CS7vUQwb9fWCxd+vrBOG92uf56N7tds8+COOhPhJfjG+79fWCxEPXD6E470a5/wBY+hY3o12zzx9CXjxD4SX4xuiPr6wWM3r6wTlvRrtnnj6Ebza7ZHyx9CXjxE+El+MbIwQnLeTXPj5cEbxb58fKH0JfiIifCS/GNuf1qWIxL1//AGnIpJvnx8ofQqx3Qcv2papiSKs9UnY4qf7sf3xTo1YsZLCzQ95VZTtyYkNVb1Orst9JzT9XKnDJ51wpKWcdLhXGRccq98qcHDnw6CHQqh3PrNcte0hF4uAZ4eZjHabEsLdRcpno+CpdAws9vnx8qCZx1fUklhW1aPmxrq6Xr8qZsp5mkW/+PjYuNS7qeHPj5Q+hRzLuUAZaqB59YNJDrENUPs8XSU9CvBzSK2Iws4QcrDDI2ni1qSUkZtcDDhioiI9ehzemI8Y99VPCbISWrKm3CGznxxCRNiPilTiFXMTGFry59CDDqV7Ll1RcZeF0dr76xH19a00bnVojPWc2/E8xDdtuD0rpuovjO8ipJvIef9lZ8K8Wk2T1MNKMmktBDH19a1j19caXRkun9lYhJ9NP40dxvBnsIs3r6mjN6+ppbvL31G8vfEcaO4cGewi9fXGiHr61pZvL337KN5dNHGhuLwp7CP19cazm9fU0s3l779lEZH31Jxo7iqlPYRevrjWM3rh++lkZL337KxvH331+VJxY7jlCWzEmb1w/fWM3rh9KWRkumsby6aXixHZZbMSwh64fSiEPXD6Uq3l76s7y99+ymOpEcoy2Ym9dn0rzD11fSle8vffsrEJH337KR1IjlGWzE+b1w/fXmI+D5vpSuEl779lEZH33zRTHUiPUZbMREPrh9K8RD1wpdvL33zRRGR9980VG3EkSlsxscaH1pWgmPWkU7lI+++aK8FZ/vvmioJRi/wARNFy7xnJn1pH0LUbPR80fQnqNm+++aK8FZvvvmioJQj+WJVKQyGz0fNH7i0uMFzfNH7ifY2YPbfNbXgrLHtvmioXTiSKUj5xS0RaJ0iFxhpxoSfiTlVqTIEVINVe4XplxQ05hTk0DQvNsu0tPMsOPOi11iy5IRvHGmuV2dOBUxcLivE0S7jbZb7pI2mLx5t17E7aE71ts6e1CZaPBQzJmIz4kVT7jUlKOFtE/Pv3ruLvQ0KzFXHsd5RkXSbq4I7RcGfmSEsUlZMp1lurjEyp/yW9pkZkpRwm6Xp+ZfeliAt7PylmsD19yYb0uaufFCOdNL8KnJtsCpGZm5ayxLmyzA1P09HDpTsMd83jjOArRfbseQ95syW/SXR5oxgPH8KfCNwbPAuYW5sTJ0eEuZsWxbtNgWyu7x9kdE/KRjojHNGOZea2r1tsyYumx3yTXCTMk64Xu0kTGOWIqc8WzjCEIklQONtsTtotN4Rps6yQ97ZK7qbp01G92ObFOORVvStlZR2ezPMNTwE2EtaYPU3MZmdpvHHW4wgLkGqhhGBaIYo6IwzqWjT+a7Iqk/lsjtL2P2Tu9MmrJadCh6badtB6EAEaXJ1zfNJQ0xqEXGx8VTxqWAqPfBItVvZ+JUW3u0WuF0P5MWtwQGGGVcpIo4RIadFGHRDlWGN221RuqsmrWwNGP6G7iOO3xYRhzVZnTUm3ePXqu/wDoyVWWl0+n+L9fEvRqXAqPfAieqGzT3uksNsAVHTCJ6ocnxceJUYzu4WmNFWTVrYGjD9DdxOR1Y6uEe8sS27haQ3VWTlrYGjAvzN/S5Hl1dXDxJrpR3j6oOLHTR/lu/wAS9QlwjT0gI9UNXR0ekshLN6O+FeqOqqIDd0tAaP8A4ctbAwQfocz1wuXU1cPEsy+7tOQEKsnLY4OXi3+gzOJyNOnU1cPEk4Md4+qBVVs/yxekJdv/AA7zUHi+8sRZb/wr3UHV+8qNDd6mhp/+HrXws3f6FM9cw6dTV7y1/wBPk3o/+HrW0S5N/oMz1zRp63q6OJHBjvH1QcVbP3L1iy3zvc7zUHi+8iLTenFxNwc1B1Y5/QqHju+TH/2/av6Pc/oM3rc7rer3lshu+P8A6htT9HFv9Bm9bsx4HSPeS8GO69UHE7vr9y9CabhV0Qg7qDqx/wD0g2QxdEIHqDqxVHR3fnYiX9Q2riZg3pk5rW7JcDq95Zc3fzpP+o7UhUyLQ/mc2WKGt7jiHFxI4Md4+qDiePv39/gXc40EK6i63CBlg2YrDrQDXpHAIRLBsnqqkXfZAFEXP6ltTGzAB/M5vWhylwOrpQ5u/iV6XUa0xraANMnN60OdwOKGnQlVGO8fVDXUfS/v39/gXc6yA154jwdFWDn6qHGRhXnIcEQgWDn6qpV/d/CN7/VFpDWAQGqTm9BBn1uBxLxMeyEajf8A9VWlCsQp/NJnQQc7g0KjHePqu7+xHVetr9d+/wDoux1kRr0jgiMCwc/VXk2hhXnpwGIRw9s1eVUlM+yHYK+/qy0IXt1TnlpnQQfssSV2Tu6Nzz7ss1Z820b+YhdfaeZYYFhsnHHnnHAhCkYDVmhpjTm5UKjHu9V3f2DqSd7X6259/wDQ9bsuWG8WTlZcvzhzO1UI03dQ8K4OnWECph33I81UaLxOFiqLzvBW/Kq1ynJ12ZKohqIW6tamrWLpRqKMe+UV5sK3paz5uWmZpp14WnLwWmGnHqnm6SbvLsIwEYceaPHEYJsoxjLKtN+hdTap32OhtzWwRkZAKxEZh90d81CVQmQjds8fEECzfCRKSE+PNHrt1qlrfKqYf9kLIxvfzGe0zDTo8A/oEc1UdTW0cS8lu/2fG9zy04OeZF0apZ8cO1saymjRpvnb1RlzqV+l/Tx/oucZnVwjiMmtrWH40yZYzAlIOFSI0udLWbKkuXsEqsd9kJZo1ZmJrDNi6PAO6uGrk40htXd8st9h6WFqZqffjTEmnBERdERqLRyRpjmUtOnRjJS057kTliZK2oucfxeMkFuxqYcbLabIWyHnDiES87NFJ25qokrGBOCQjiLmFtDqlT0ocasYp3p3LGFWWpYk24bbFLDjBUkRcINVWs3VVqxhsOKwwtqq7pbb4QXKeue51VVY+iS57yfypbsgSnZgSNlh9tt4Q1rt6pmoR8NtnykrlvZA2UJNcE+ItzLzmIfcnKvOxFo+tUcPSw7h89r68/Mdjp4tVf8Aa/S7bF7BbhFd0tN8ILhD1z3PW5dbCtY5Q1XdLQ8I2Tg4nMQjrcut3lRkPZCWUJNYH43T7xavuLl5q1bWLi+tamvZA2UNwRNv8E4/zetO3lPjYuLR8KscDCd3r+dxUVXH/iReo5SVU0tDwjJPDiLrY63LrYuJeIZUc1ocTN+OIsTY01cutiHQqIlvZA2UO9qgf4In2y1esuVU06cRaujRqx0xWmT3fLKEmKhdG7v23NXEy5Vd+EUMOhHw+E7vUON2ht7Ivwcqx7UOJjfI4nMTOHF4UKh0LB5WNjUV2GFgZnWcxMF7oPO+BUBLbvVlDvaoHSuWX2HNXEy51unTizUjn4tWK0yu7xZQ72qbd4GWflntXE2VN3TpxZqR40nAwncPVbH7eyOg3ssGxvODb4NkXyxOdYL3Qed8C8vZYtjeVAHAttuuYnC4BzVeHnfAueGN3SyhFgTbdKmSdknut4mypuSHTi1dK0tbudlUs1i4X9XFJP6uKmm5cH4KS4+ck+HwncOjWx+30OiX8t2hvKmwpZuycKpzC25quDzh/wAl4mMumm7ytpsbkm73E5wYvdbc4sQR7PIubR3a7MIaTFzhLOKSepJvEQ9acFYf3abLMSrFzhrMGUepp6831t0dOrreUmSo4TuJI1cd1X0Ojnd0BobytoRuXhZeqcc4MnOtlxYhLsrDm6A0N5U0I3TwsPY3ODcc63Vo1Y85c2Tm7HZpi/rZ35BlhzV6+yWF7j1dZeZ3djs93fdVQ75lpYdYcMyx7px6sUx0cKSRq43qvodIuborQ1VMCN29cPVE5wbxdbEtGqXOWv8ApJY7QI8NcFwjmF/ZbLRhz8kVzlaO7BZru/cRDvlmW5uGZY1i49WKTTu6zZ7gzIj7vcODiHg32dYuPlSSoYboSRq4t819O46V/pKYw8APXrjrjg0v9pLRhz9leA3TWCu+AHhHCYHhHOvjrMlowl2I8q5vnN1ez3N9kOG/cYfbxCV2+zrEWnVisT26rZp75IKhvX2JtrEPBvN9c5dWPZTXQwy5DlVxWx0aO6iwV3Sx1xwmRqccHhm9ZstGEv8ANao7q0thLe3XCIW8bmJxvWb4sJQ7C5zm91Gzyv6CIaptmbZqu+DcHrglp5VpnN06zyvaSpqmxm2aqcJe6DhjypkqFAkjWxHVHR39Lcthplqryq74RzEQ9cHiwlBeIbrsthplqrwSJvhHMVOsPFrQ7C5pjukyOsJUkMzft6uGrrjfGvH9I0iOqXW3yeb1dUtZvjTHRoknFr7HSkd2KWw0y1VQkQ8I5iEdbk1odha/6ZZbuSqoah4RzEI61OjWh2FzVDdDkRu6S62+Tg4h625rN8a1jugyI3dJdbccIcQ9bc2eNM4NLuHcWtt+anShbtEt3Js3g8IWJvnDo+paj3amO5NmrrhYh5w6FzW3l9Jjd4utk5TiHE25srWGXUmN3iqpvBpqHrbmz8SjdGn3flh/FqbHR7u7iwJfoNWGqq8LV+RaXd3ZruEdUS65skucY5bynB7VIkJYm8Ql8fIkkcupTDrYRJstXVJMdGmPVSoRewAGZmZes64M0k5SNLQi0QtSzDY82LhEUeypBIUk4TparltTb5dJuzJQiHxYHTFR+xTIZtsaq4i8w4+LNO9JZlkqqSPiLT6xTzZEfzJgtopTKV7xiFsavkUlFXlqTT5Da5AgZY5CZs6btJ0vfZ+ptnxqSFSJ8hYFpsMAyko2wJj1wb6WZceFtws9yRxceKJQhVxQzwhBIrWkqr1seN96w5Aei0Mo3MufxLzbExVLTb44r+1nG2ekzKShCVPRViHyN32I56jMOV8yTkoMuDDQyjXADTwLDhN0k/ijmqCBaDLPmiUY8cVLtyjc6K0Ht/vPiEuy82RPOlw869hfEWmy0sy8cMYuFpjDPCHHGKY8hMm23am3zEHRJngiwi28Tks404/V16ptwswcUKY8cVa8m24+L5CJBS8IjTTU1d3jbko5ToIW+DIC5RfzcicoykrtjJSUeRae+rS1uq5/OCswm7S2bXc+cH0KsOpr/bCWYWdM9sJGR7kWdbFoRnbS/W7nlD6FnqhaX63Pyh9Cq3qdM9sJY6nzPOJDg9xM0di1OqNp/rlzyh9C9QtW1f1uXlD6FVELPmecSIyEz2wkcPvFzR2LWK1rX/XJeUPoXiFr2v8ArkvKH0Kq4yMzziWN5TPOJGR7iZo7Fq9WbZ/W5eUPoWyFs2z+ty830Kpoycz2wljekzzySZHuF47Ftjblt/rcvN9C9Rt23P1r/wBv0Kot6zPbHEb3mee4kyPcdnjsW9C37e/Wf/b9Cz+UVvfrP/t+hVDczfbCWINTfPcRw5boXMi3/wAobe/WQ+S36FiOUtvfrAS8Vv0Jg3Ksh3J4Xpu0H3wlWyuWWmTFl+ZfpG84QoRu2hqHVhnjEuxCOee5P7nrDbxCUtvtrpzL02/SRYW3HCi22wHZi3CMcObPxqCpWjTbTlyJYUpT1S077DD+U2UHdw0lq4W9npZsX7ky5ZZUTxSQy03M74emyrERpEWZTVEqR1idMSLPHZbHnK77Xyek32G2p1oSab4NtoSJlhunVFkW4Qi2WYacMdOnjVSbqe5++0+5aMu5fS7xCRAWF6SbwtjUPE5KjhGqGaMIZoRhypaGIhJ3v4LcZVoONtPPYrYYCDZOEQiDY1ERFSI+EXrrKypWNvWY0Esw+w0yY75aoFtxt0XaSIxdKEIuadEc+mFObsJBuX2CMzOlNmNUlZjl2xVqzNojrOU8RAxV5TkO1qzcobLanpRyReImoEROS0wPXJGZ2XR5zJcRBxRhpVuFDNHM3q/oV6lZKWVLRfUgkcqsoO7Gvm21rjlXlB3Y1822qzylsO0pObdlJonBdaKnQREDglquBHbAoaYR/fCKbaZvnuecopU5J2uSRlCSul7ItyOVFvd1sfNMrMcpre7rY+aZVQwhN9sc85ZDfnbD8okmSe475NvYtWcswWrEhah1E8VrRlniEuCbZIAG8u+IRvjHOXJA4ckFrskROoSw0jUJDrCQqUbnsjvnJIJeaxQfnJxpzs3bjQjV4UMMYd8YKBZMzxN61JusOOMPc1wmeDIvBMKT/aLQUnOGTrYz8mSWdbnuXfflJ2ZKXIQebqcZIhFwbzg3MQloII8In6OUtvdtlPmGUxWobZzouDUIvtiJVaw1VMl8l5xqv7yc2nHMOHWLZwrMySzNGlmi4p/4uW3+UtvdtlPmGfQsRykt7tsp8wz6FU++Z7th+csb4nu2Oecl4T39xLx29i2fyjt7tkn8wz91H5RW5zpP5hn0Kp4TM92w/KJG+57nuecjhS39wzQ29i1/ygt3/ofmGfQsdXrc5sj9Gl/Qqq35PdsPzkb8nu2H5yOE9/cdmht7FqRtu2+ZI/RmPQtZWzbPa7P+iMehVfvye7YfnLEZue7YfnJODLf3DNDb2LP6r2z2qz/okt6EFa9s9os/6JLfcVYb8tDnueUS9DO2h2xzzkcJiZ4/iLK6r2v2izfoct9xEbWtfuazfoct9xVtCetDtjnnLPVC0O2H5yOCxc8fxFkdVbX7ms36HLYvMWYWvau1KWWX/o5b7irbqlaHPNZ6pWh2wkcFiZ1+IsqFtWp3DZn0OW+4s9WrU7hsr6HLfcVZxtO0O2EvG/7Q7Y55yOA+4dnj+ItCNs2n+r7K+hy33ERtm0/1fZX0OW+4qx6pWl2wvOWeqlpc8vOSfDeAZ4/iLN6s2p+r7K+hy33EdWbS/V9lfQ5f7irHqlaXbHPOR1TtLtheck4HgGeP4izSte1P1fZX0OW+4jqvaX6vsr6Gx9xVj1TtLtheciFp2l2wvOSfD+AcVfiLLjbFpfq+y/obH3F5jbNpfq+zPobH3FWxWnaXbCWorStLthecj4fwDir8RZRW5aX6vsr6Ix9xait20+4bL+iMfcVauWhaXbCWg560u2Ek+H8B3FX4iq3ZUqm2DAWYPUkxZ8uWIi2SnXR0jCEMUc+nN2E55OzAm7KSgjwV5aco27qi7vmUK8ux2Qg4I5k3ybRFSTFQuz5OMSVWs1JD+kzbhFprPFij31sI6DZflxzwbc3pZbRbQs/pM653o4tKji8ruTNXJJLQquHtq9yYe/aOMuSTn1CmK0mbppjPqtHb7Y5vezIYEPfjUI+MpJkyFTdmCWIh6huOeK9ad2P2UgGWvG7LEu5hmXOkU7NzM655klnV2UVKJEtH6j/ZNnED1JC2TxMtsTInSQ79sySknGXB5wFB4gj4StnJGwLuUbIhKp4RcKrWuxG7lqunBi7GPgwUdyFydKbn6jqoG8feLouOSA+Ue9CGHeFyOyrp3uPNSVKmXREbVyIdSuijqV0VL97iiMuKg4jEykQ6ldFYjZfRUuuRWYS4o4gZSH9S+ivMbL6KmG9xWIywo4jDKRCNl9FeY2X0VMN7CvO9hScQMpD42V0UdS+iphvYVjeoo4jFykO6l9FEbL6KmEZYViMqKOIwykPjZfRQFk1EIiNREVIjziLCI/KpkxZ5OFSDZGXNASIvJFPVg5OvhMsOOsGANuC4RGNNNIkQ9/jpSqcmJohjbYcYabboumWHm5YidK5bKZeIRvLwYRjTGLmbRxxKEIdlS3Jq03d+z43glJM3MsxSTZXs2zedUXeDxtlA7tuk46LuOZbYWG2W+W3eGamahfB7VIXNZsR2RzUwz9GHYQ1ZktKSlxLtty8uyOqPBttt1VEREUfCjEijpqzxisyrFuV2aVOpFRyrmSB6abMRE6TEsRCQi4OHVwl2FFMsJ10apRkxJ206mJYSbq3oyLYjNzbg7TLQUlCEeMnWh051Hcqd0GTk7p4nb1q8u3jZEZlljVGp1xmPB6w6I6Y8iW5I3rt9ak03dPT4t3DBa0pZzeKUYLmunUT5996ENhWMFh807vkvyxWxdV04d75DxY1mNSkozJS40MsNi22OsXSccL3QyiRFGPLEoxW0l6E1kxXR6SWnMweTEGUFitWiwMsdIzDWGReLyt6ul2ouSPJFVPNWMTbhNmNJNkQkPNIVak9agtODtENLlPOL3Nv5Rqj3m++o2+1W4Th4icIiIucRFURLNxNVJ26ov4em0rkK6m9FZ6mdFTDeorG9RVbiFjKPeQZiNkFLVUmFoX5dFt0INCXlhm+EoKtsoZPelp+9To7OrfjeEPlBeD8Ij2VKRmylH23P7O+y5KPDzScK8Zc8KDgiXixTdlfKDMyF4GF5srwS7W4JVD8hj8nwq3h67cvC1vDqQ1aKS8b+pHZ6PWy5pF5w1D9YpRCz6icIR90c84rz/USCMxesC7q6rhDzSEuEH4o1Q8VSvJkRcaxa1Lf2Sb/0c/jJMbpUzLqgwy/27PoxkhZnRWY2Z0VMN7CjeoqpxGT5SH9S+ijqX0VMN7Cs71FHEYZSHdS+iiNl9FTLewrMJUUvEDKQzqV0UQsroqZQlRWd6ijiCZSG9SuijqV0VM97CswlRRxGGUhnUnoo6ldFTPewrO9hRxWLlIZ1J6KxCyeippvYUQlhScVhlRDOpPRWepHRUz3sKzCXFHEYZUQuFkdFZhY/RU03uKN7ijiMMpDOo/RWeo3RUzuBWYMCjiMMpC42N0UdRuippvcURYFHEYZUQuNjdFaysboqbxYXkmEcRhlRBisXorUdidFTk2VpJlJnYZUcftcLSTWArSLeUp/01ly2F53o1Ulp+FYnI3jdTI077EpSSHuay5bC/M9EnIiWn4VtYG96zg3+XUyQ94sxj9LmejnxafhWyYZv7tuXwdUXN4SnvFkyWF17o1xEoxilSJrjlkq7dywzZapOvzrI82SseUdYlPFOafbhDvqTZNWTez7FnANbrIyzJDsi3KSRSDxFTpoKZm5v4pZzvZ2+xmhIRcAeBK4uA2up0k9dyDXhTVoUx74sFHigrZ3BMlCYZmbYmCrmLSLgSLZkm3CuyHm3p3jvwOCrbeWBE9Sw8n7JblGRZAcWG8PacKmmoujDihBOS8wQqg0zCCysQijOgAjBYzL01CpwWxxG5VdjUIkVI1FTVGHInCFiP80B8J1v+GMVJChOavFEU68IO0nYbcy8xTtCwZnkAS+BwVresWaEc5MHm6NLn/bjFK8PUXT6DViab6jYsZl6jBYzqBlhAvMYL0iMEgHjMsRXuKwMMQ7I1DUXNHaLDp+RFxxKMkpg2mamizXhVFm2hHCPJq62bwk8xnSLWbb8K7pLym4wTQFsYrvfco7SIiIvXYuC3sjUMR5O8ljU4Ze5yx+A6XoUc6sov5WPjC61RvN4S2SHwSL+KEU1TlltuiTbzrrrRCQuMOjLOMuCXbBJvk4/FgnK9LaYHxXf9kz5XW4UowN1LVzcy4MtINE7hcmXBIhJz3lsBJ0o8gtx5Sgo05Tdh+kFcrUNzyzyygf3reDJMNyzlrStLYyj8+LgzMlLUtwhxUi+YcUOBhtlBWSZpDYdnjKSzbAkTp4nH3j65MzLxXj8y50zcIi70M0OKEEoIlswgoRUV/yzLq1JVJZpeXgbM61zs4LTZOFs6o84i1R+P6oZ48i9QJRa2prfL12PWm9bpbJF43FDvDGO0nSq8ONxkKWd2NLBE64UyeInKqfB2i+Okc3eEUpWIQWVlttu5oaIxmWIozrykFPM1Li6240eq5hq5pbJD8Ef3pss0Sqclz1iqEv7xvCXilCmPyp2LVTXMPcIy5tlwZf37Gr5behWaLy/Ns9fBkU/m+Xfl4og9oy5MTb8sWo9U814WEXh+Ops/GLsqR5CP1DTzhL/AE3PveUjdGkKmWZ9oaiZIXB6Q834wJwfG+BNeQc0N5h1bwaS5wkRCPywebUmK5JbfToJQ69/1RYCxCCxnQqRMZzIzIzozoAysrzCKygD2sQWILMEAZzIhBZRFAGFlEFnMgAzIjBZghAGMyzCC9ITgPKMy9ZkJoBBCIQWUAYRmWViCAMEvBL2S8IA1GtRreUEoZsl9zVaKnnFwY+dmToxcuSGyko82cZSbd7TdFdDMiUhKF3NZMtinZ3okeLTy1J3kWhIieFshF5hltloMLzFluOXMlJMc2bnDHW5BqipcO5FaouOCbDYsOE3LYZlngbLluEuG+W9fc0Rjm0QKOdL2tz60toGyNwheeodEeEK8J4WyKHBiLDbEqEYcQuPR0RipYVIR5tFl4eo+UX6DTZsmTg3lIm0RE2NFQtvEyJMOExzZcIVS4dG/LWchFTprK20hERAWhEREREQpEREaRER2RhDRCHJSlNiZLPhLMC8I1ttjf0EJCLxcI4LYjqtQiVMNGaEGxT5LWIp3UjJX5lWpCcJWehuyHyjfmXCZmmxEhGoSHVKnWFTDMmGw7MunbzokKf4QVZvUAzKsrdy0nN8uty4CLTbhNiRDURUlTUrOOCrnqVU4XScL7SdTt1Ed+hVm7ValrzLEo8Dbogw6QlMS4uNttvODU2JPDoE4w0whnVWuZR24PCb5nubWJvFq9IVfW6hkVaU2LJST5DLiI38vU4IvOVFduE23ngRQq44wzpgsTcQyqdaGMpC7h2SfNmHhcJD9yuqEmk4Xt11SRBxIq6qWv001KrPL/KC7ESnJ7Dq4nlrby4ygxM7+tKrmC4/VzdnSr3mdxzLwmrnfIU005t9VDT8yobO7heVguVTGInKmxO/LCQiRaxQhHiEowjDmqVU6nST8mvuMz0/3JLy/osSTystJhiWljapdYlmG3yeqJ4nhZbvCcItNWepb/y0tLmNeSnAZR11uWKaIjmBlpZl8yIiJxxlhtknCItJZ4jn06cScGLEHmqpVUFJ23J4OVlc9ZEZSPzLzjMw2Ild3gkO10VMEwWLZd08LnRIU/xVWT1JTySrq38t5kX3G5VoaGyIajxERDtKw3FXsbKqcIucRfaRC3UHckWR75T0tfTTbd6LzjeEdkaSH6iT+3YjXax8lNuSEtdskPvlXlCP3VJ2YqniNJuxapO8RGNktCNWqIjUREVIiI4iIi2RhDTn5IJFkdZt6RW4dQg+JMWS0dXB2drOTpCWkXZkxEodgG2YbUVstRnqhNjYoFwN23N20Y+52cThCzIVbLs042Qx7DbT0dqCnVpM1M0js6ojhEadURHZGENEIfAtPs/DvK5vyMvH4vLNQXn9hhNxeIRWsorXMvi22RFs+UXNEelGOiCtEYkt+0KG7kddwdnWESw4eaRRww8aPImyVapHpFiLwvuwhoh4K0BU48Lx7REQ83CNOHow1YeDGPKlsVQq1MzLlOGVWPDh0jUWziVb2nl3M3xDLsDQJUiR1ERU7SsOdhwLn92X2VAmLJTYW6j2JRy4nu0Nl5Sk+ReUpTl4261dOt0l0SHopG1YuHVTlYFnXTxFzhpSzcegK5IIqN5RVNlUPOFwfCb/ANiKCkqZ8pGuDEuap8IlKTg+qK+IbilJdGLpGmZlnGdlxupvoi5rD4p1Q+RVrYrZy07My20IvOMCXgkQj4rjeb4CHvKYZIT9LjzG0zS6PSYe65T8FOf9nFJN0GVuJuUtERwC4Iv09pIhF75IUn+zj3klSLyWfNElOSzXXJijIzKcpy8E2rk2xEqdkhLmqSqO5MWddOEXRJv5twh/hUjgqrZKa5h0WxJwtURIi8EVXc9uhv3hCxLCQCWEiIqiU7t2H5s6PObp8pQiUsbop8bdRGaIZfTncw+USlGReUpTl4JtXTrdNQ6wkJc0k3s2GnbJuzbp5wucKJuPQFckEIrD7tIk4WqIkReKvA6y9vSDr7LzLLZGRNkOHVGrnEWgfjimJX5CvQrqd3Q374hYlhIBLCREVS8/0gTncjflEphZ+Q8nLYp9+s9qXlCGkei5MlDF4kPjipHk6MpeU2bJtCY6zpDfEz0nH389z8WbPyQRKtSi7c3stX9ixTwdWazWst3p/Yl3P5WetBi+flHJIasJPCQi8PbGmyxEHfjCEPhUpfyWpw75bq5pjT9mMV4mLYuhLh710uuO4qR6LNWn4Sjp+BRObykFsipxeEq88ZBK0Y3fXXRehepdmX1nLTpZav16EgfsUh91aIvCIfOzKLz0nbgkVzIsTAbN1NskRD4LkQj9SWyWVlWti8X+JPMpa4uKBY2UXrHQnl2VBrRv6kDmpq3m8RWM/SPNG885uMU/5OOTMywLjso7KnzHQIS8LFDV+FS1ueIdUvJSpq2HO2F4xVfaUvx9J84teGpWl2XPpJehGoSp9rJNWUduydni2VoPkyLjgt8E2UyTdW08LfWx+DPmU+ja7nO80fQtbs/VrNtl4TTZfagpIY+guab/ADxI32VWfVfnkRKUlHZxu/sqZs+dY1ar1xshLtbl3AxEu9HMk01ZVuBqyMs9/czjZF/jQD/NONhy7cnajjku0DLVotlfg0Istk+wNTTtI6K4hUMY8sM3YU3GfFaeGVLEQzxRlYunVw88jl4aEHs6z5wmRcfk3WT2g4N7ySYMoEPxr27KGOs2Y+EBehTgZwVtGaHnKR4JPcrrET7ivIsGXWm3HS2QEcReMWaA/DGMFusfJ6eIqpoW5cNloCvnqffHNRv4IQJWAL485a3i5qfTwkIv5tRlStUfLQa5CyRDEIjVztYvKLT8icRgtbDpVLaYYldWjslZdxWktL9e8p61Gn7l2iZpdpK6K6G7Etm8Eo5yHkjmzaEz2FlCIPuSkw+68643KTbJG0wwyLcyyRONN3JkRUPCQ4454Qpz6UyZR5btCRDUI061Wz4XNVQyFttO20MwD9XBv4B5ovjTi8olxOHhmTTO/wATJxnFx35dx0nM2y2JVYSEtYS8nWTpIwEmxcDEBapfwl0oKjjyjG+FknBrIaqdYqecXN+NTnIzKGghbIsDhUlzfCHpQVjDtw0fUh7QoceKa5r8sWMAaq2xFAw1V7zLQRzbPEUwWdIG65S0NRYvBHFrEWyKkJQWnJCcBu+Ei90xU4rvwuapaKhm+d2RHVlJR+Vajk3YDAsk3MAMxVTVAqhESHFwZDGER+FO1j5pUaWBNsNai/dIfOOKVQmpZzVKqkcQhhLwuWC1xnW29UnCHmk3reMMMy2PiaMY5PYxpUa0p5+u44jbx6v8RelIpsGZg2zerjFrEI37ojV0hz5ih3l5mJhjCQXlRa3B6v1LUU81rcJV0gpH/JRxxFDnHR+Ys6VZ6SdyK5QZLE0RPMjW1rEGs43+9wO+m6WDCrFmXcNVQgKiFsXRPVNbQjeQHVFzVKnox4/GVXE0oWcovXqvEu4SvOXyyXmIhHVW3MjMiKzjRNZqOiH2lIzTBDnFhEaiIuaKAFYWmxLCN+6DV4XB11DVSOLkzbQpRamVUoxLOPgbcweFtiXacEnpmZeK7Ylmxz56jcIRz8kM8eRVJldbgzL77Aa0oTNXRvRcEW6edCkYx77mbkUas1m/cmXSGoZazpmZs7W4R+WJt4pkadJZ4NkEM2nNVGGtBRxoSq11Hppf87yac1Sw7l11sdX5E2EUiyIukLs3Oi5N2jMDqvzpE3VR/wBO2A3Qw5rGjlT+Q7KQhN3rEpNhi4Nt4qcPBvNDsltRgWgY8UBhyxS+BYatktWK6OGmhycpZ/mI3bkpQV4OqX2lD7Yn2yebZN0WmhIqjIqaiHrhDzs2pDvkUdmCmmXU8LUk5ipMsIl2sRxOOfFDi75QXO+UVo3rxFqgOFseaI6vjd9ZfaddUlZc2bvZVF1lmlyRZ7Fryz75My5Viy2Or1sRqpGkktVe7lHXpsua20PlERfwqwIxWfTk5RTZfqwUZWRrmutueCSY2AT3NdbLwU0swTyMXsBhW1oFhjVW2CSXMEe0ktVupkkrXh0cNKs4SVqsfH66EOIjem/D6EHJwmH2psfcSpdHnMPEIuVdETpj8DhKX2xJDMyjjGth4PpCQ1N/KBUx8GKSS+Sk3M4mpZw2nKhIypZbcbLCVLjkYVaKtMM/1KV5NZGTgMMtzDjAmzeM1XhOXjIlwJFSGEuXN75GHItLGKMJXutmrryKeEm5RtZ7rT1ITkNMk4wTZ9dlnnGHKtqkRJtzxgLP8NXYUiTrIbm7rc69MjMtC0+2IuNXTxFeCVTbglohoqch8DkOxBPY5E/9SPzRffWPJRT0aNG7fR+hBLUhwJJulW8KsmZyBvBp3zT+yL76S/0dODqzLReEDg/ZjFGm6C/cyJsN4VtaFSV3IubEcF274BYvJchBMs7JOMOXbokBiOISSTg1ZhGSehqhBMOXuV5yjm8mtVgRFwR7cWJyrnFn+v4E+uTYsNuPliuGycEec57mPl0x8VUvlG8cy/djidfdpq6ThVEX2oqGvO0Mq5v6Gl2fSzTzvkicZJyTtoCM7NP73kNbCX5zM06wsNcYjGOi8KGbjzZ1KLUynaaaGWlRFmXb1Wh2i7Y4XG4ceUizxVZzlpXHBiQlSItjsjSI04aoppbnJt8iEGH3ae1MPvVeDdtxqVZQk1livHd/0a943zSfhfkiWZRZT0jVUok7bxE4WKr1wp6sLIK2Z4ScGRcZDDdnaAjLNudIW3I16PgipxkXuNu3hFaEzwRarNntk2V5znpt9uGCENkIQzx49GiNilg+V9CCpjkr5VcrCw8oTcJwqsQlT0Rp1lYFkW8NI85TaW3GLGabKrfJmRETju+SbKotoWmIC2PxQTFa25Y1eVSFoE171NtXg+K7LUl8UYfGo8Rh1F2bXqTUMWpq9n6GyWtkipxJxC0U32dkBONj11h4venafNehCPyxXufsaeaGp2WdpHaCl4RHwmYxVTgPYfxo7jp1VHawrU7bjY7Sh85O6yYLStAuciNC4kqticTeULd+xi1XCLyW3E9S9ujSOLZVKSlqcI44WyN2PhFrfJDR4ycpW2qdUl1nY+H4dJ36s5LtivxKqt0RcbdsDzkpatTpKqpS2uknFm2ekthQRjOTLLbtBa7Vn3SZ4IqSqHydoVBpW2uknSUtYuDoIaiKnFiHEknBWCM3cnVgvEQjUVRbSVW5abUs2RGYjzRURtm2W5NsnK8RbKrqdtB+0HdYqSLCqdOGd3fImnLIrLmanZKRdebem5SWeNukqzb1qe2DxOD3izqv7e3IpRxxx+zZwpQicJy6dbEmG6iIqW3GsxthDkhHPoT4NtNERDV42yXjLezMt6wuLiYynT0u0eiONOo81k3uUxljk3aVmzIzZti6yVIjMM1OMFThpcLjbLwlY25Y47POMMABCbrjbTeYquEcKkSHRyVZ/FU2kbSLVKkgppICESEh2hIS0EKecibWk7Pn25tqUaA2qipGptvhBISIRHQJZiLNHMrVGvG6zojqUZpSyHQ8rklJi22F3VQAjnrc00jAatbl41sjknJ9rL5xz7yRZK5byk8TQNVC66ESEC6I1ENUOx31KlpJ31RzM6WV2ktSPxyRlOafzhKgPZEZJMWZOylpy5zLYvEzeiDudoSYdbbqeb4yAge49OaI99dPqo/ZF2CxOMSO+AMrtxykgcJkhjGiI4h0FDOOemKs4VRlO01pZ+ybXuipillinH+S93ZkLtjfMjY9qTbBUOtyV426JNuUk24JapaeLswVJw3ScqRkGLTvRdlZl4pZp0QZcInxK7Jkmx0iefRpVjZYzTo2Ha1TjhCMo83iKr3RtVzuU5ZyxWbJWKLbs1Ni4/MsNA0JUz4vk8y4NTnCCLZFHkjnbhoVSvRoVmnOKb3fMkpRlG6TPeUe6VlLIkTc7SyQkLZVNtkIuEN5dk43GMBPNpzZ86ZJPdutUXKidbMfJ84Yqd2jlZKPvT8zdG61LTrxTpOyIuXIvSFy229ebQvDnzaY5tMFGSy2spxsnbughG7J0bPbuyfekLiknBzC2Vbdff44cUVX+DoLkreFyVZnzFOVG63as45LSgk5Lk8TDdIjS4V8Q0kRd+BZ+TQussnsiWilpcjfO+dYF0oDd7QjUUKhzxhCoYZ1zLG2m563LOsm6MZgrUYceF1tseBZG8HhGYxxQAadHJy8i7KlZduVZiZlqgNbhdgYUwEeaEOKAw+uMVbpUIwp3S1b8Xp3kU/1W6Ja9BgdyGYGGeL5wgPOFqn7K8OZDNd0uDVHNDOLcdMdUfhTyTlf5y/hagQ72l+MiLYcMdp6PIHFDjjp4lssxGJQfe1/cw4xZGP+bkeUvih33OCS1Gxld6L/AI7yMx3P2+6T8gfSqi3eG5axZC8CaF55wiEWaRHEOrVScaRr0xhm4gJWxlxlUQ38pJFAXGm65ya1m5Frs9hyYjxQDliUOSEVxNl1azczPuCBEUpJOOUkRXjj77jmIiL3QyOkYeDDkipPh2oqUuvTrbciWIjObhDpzfS+w0szZNMO3tRPz9246e02yLhERFzarynPyVRjyKdWJNt75st46RacbclCw4RF9kmNXiphUPkwUNtezyFhwj688NTnvdI4WR5ohDR341R5U5WCQzNnCyOu2NQ871hFT5eHaS5/lgb4l4s6U3DMoL+zSs2ZwTFjlvSYAiqcfw8C/i00k3TDsZxzKcSzt1eNngARJ0ei2OJzxYceb4VzLknlIbDspbw030g43JWsJYRelHOBGbKnaCqrPp1S7KuTdPypYblRNlwXqqXL0CEhddIeDESHQQQ1owz82HZU9WrGMM76amPTw0+Pw11/PYim6hlAUy8TIFSPN5rY6rfHrcse+XeUBelMOt5v+68xtAiIiKmoiqKqr0rRPTpU7Pr4S5LEYjjTcmdrh6Co01CJNdy5gRbmyHadZHyWyL+JTTOq+3NXHSlniCoqny2cOFtv4lKr6ZpKrDtYxHV/hWxh8FUnTUlysZWJxMI1Gmxym48GXgprZWqYmn9UqaejSSRjMuc5SPBTRGsRBkjYjhW2EVGI2g+O1hWI2s7zucmPCTHqrElK2MsOOELYCRmRUiADURc75Iac6hxWy/zlJdza3vz0iemRl6WiFmrDeOOOCNNWbNohyRzZ01UZQeZ9BXJSVkWzLvELbbeEhbERGoaqREaR762766DfkpNCdIvdGj8LW81BTDnamy8Fwh/cs2pVlJt3LcKaStYURn/ew85eCtQh9zb85JTmXNqW8lwUndnS7kL5xv0qPMx6ihU5bTna2/O9KTuW6/s0D4o/xJI7P/8ARu/ON+laDtH/AKNzxnW/SlU5BkQsja0yWsZeLh+yo9lPArxtwsVQ63gknQJ9zZkxHwnavspPlK/MlIP0i0BC3eCAiREV3iw1bWariVik5SdiOcUkV7l/Oi1IE3tOuNiPgt8IX8KgOQFjzc5PuONCNIjci6XW2BLr7znNEQ0aNMYlmgnHK6Wnp7ezANOXpTNLZGDjLbYk2RPOPOFCEBaEBqiXJAezGCm+TMu2xLdS5ByhlnhJ2dMcT7hazzg8ZVRqgLUOKGaHJGKsLDuU05cki1RrqNHLHm3r4DrYUZOUIZaUabdeLCUwbbbky+W0444UMzIdgYZhhD65SU8/qk+I94Sep/w4QFQeatBiUbIZXCRdcdOm+e8ItkejDRBMZZW06xjSq+Iuv0vy6F6ik1qvuWW685svt1eC99peGppzbdEvBJz+LMq5HLBsvdBSyVypa7a35Qqg83QtpIm7k+I84vBFembWEucXRMavtJskbUqbvKaR5xDTV4KI203VSNPiqBp9SS7H8Jxv/wAcK3s2iQ6qjwPVaq3tuEhTlHkxrpp80OFr2fJzg/nDdJl7szwb3jF7oPeKEVAbf3IL/wDRbQERqqIDapcLo3gxiI/DmUzB7nClLT4irNLHTg7tJ+JXq4SMlZNrwKJt/crtlrC1LXzQ1Ukw4LmHWqpz1EUfg0xUFtSz7SlKt8SkyxTiqJpymnnEWbCOfsrrcLSp2vKTizaok3SWLo632lt0O3I8pRsYlbsV84s48k5+bG7qaPhMTeGoiHnCI4uLvJzkre5xYl1RNRlHNeWYP9mPg6wwgmSbyQsZ8rw5FqummoKm+jq8RfDm49Kvw7boPmUJ9i1lyKHZtnpeUVKdAyluKXO1jUI7VWzSrlyb3NbLk3nX2midi+3d0TVL7bLdVRC2LkM1RYc8ePMMIdlYtTcvsh8iLelyZbUsbjH+HniH1LT48Jx0Ml0pwlquRR9mWsVpPE885qlha5qmEvLi3duCVNOJOc9uJAL19JTzjXQmGheH5xmIl8sE025kPbjY0tAxNB7w+IufNvwCNXehnUbu1ZDlKKd2U2OQVsnhMm2h5oXnozLZDcttQiGh+jm1X5EXijCEPkXQWT2Tbrgi9MEbAFSQhiviq5wl1n49PwKWyUq01hZHFziIiLyijnXG1sXb9TOxw+Fk9UrIpDJTcXtWkSmLT3uG0IsXzxD4LhwgPxqwh3KWLsRCcnr3tp70cHpcCLIf5/KppFwR1iWh58i1FnrGyvol6L7GtCjpa79X9xx3LMhWpF3fJTLky9dk22LrYtXNWsQC3GMCjEdGfPHR2NKsuKpJx6cEqmnCGnyS8VODeUM24N2+TrRD7rLuk2XjCWcS+OC1KfaFOWklb6GViOzqn6ovN46Mse2H5mAUyzUDMsIxMoCDfZM8+tm5Bhxx5YQ0qHbpFnvnZpE+ZHBomyzG01jKOcS6xGN3m0Rzx7ObvqOz01atNUpaNZcdE3F1n4r5gHIfLCEFF7TtzKMm3G55imVpKp5icZm2ah1artkSHPHs5lfhjIRWZJNLnZ6v/Jk/9Nq1KihJtNtJX5J37lqRrLmQdGwbWLZ3o4WqQ7QrmfcttJuUtqSm3nBZCWJ9ys6qby4eFkcMIx0mQ/WulztU3G3mHhbmGHhJt5p2q7cbLZKmMI/JFQW2rBsNsqSsZjENVQPzbe1Tq3+tn9dCwafbVF3jK9/C/wDk6qt/pXFU9Vla8TRP5UWM/LTcsE2wDU7Oyk7Mi6L3COEJFMiQjCFQQiLYcfFnjxcaSFo5PtuE2BSggTjDoiDTzjN63KXdTjdFJZnKtEYZs5DHiXtyybDEaupQ+DvmZ/nYviRJSthiQkNjMVdNybcpqGrFw2b/AMVKu1KPRy9P7K//AKexW0fUe9wt1qdy/hOtVGywMxM1UlUVLdI3bVNWnFCnjXYcCiR38xAii3ilpUIEVEeISOnC4/Grj1R5OKJR5hyBt9uzXCn7Ps9hp2m7olJZsnnBIiEqiOMIkPLpipmO7hafLZs59DAvsvLWoY6FSCyp7d5hdodnVcPWyTa6Oy1X/JfclKlEr97rtOAIaQYGPGIc448pfJoTHlfPzRmUjJCTVQ1TM8YFcyzW1RVoeejDihD49EFXLG6xaBS1/ci0UYFgfYIHBpKnEIny8fwKD7oW7hOHIuWeJjKzEyIw320N3cNVcM42JZ6jEBKMO/mVmhNOd379DPxFN8PLG6v6vz6Gv2QmVwWfIDY9nlGBPEV4USqffdc64++5xuHCBfKcIbKpjIWxbzhzHgZYsPv03tF0gagWaHfLopmnbXftu2qWiIicLXPFcSw4nHnOc7HEUe+58CtwJFtphuWaGlpoRFsdqked0oxqjGPZUs6maV2MoUOHBL18SG263hLxqVE8nZwpadu8VDhVDzadoVPbWYUJtiUISvB1hxD/ABKWLzLKK/ldywbDlXd/iMuLZszrJNvifWRZwuOOueBAc/w5ocqzlDPtkTbEuNMrLDcsD0R1nCp0VFGqMY9JPWS2T02NliOpNzbbZP1VcBLFwjcoPNOMKTj2KhhyL1I7nLrmu+IeCFX71i46rKp8keSNPCU4Qed8yLNGtc+WFWMxuZiOtNn4rbY/azrB5BywvMt1OO1PNiQmWEhqxDwebjh2IqjTw0pyUV1LtTEwinJ9BPuYSpFZwuU60y/5pCP8Kl29qR1RIafCqHaH4sKdbOshphttplsWmhwiADhESKrajnLTyxzxS0ZTyeivRcNhVSpRg+isedYrG8SrKa6sir8ptCPNpp2qf4ofWkD7LnMHnc7xsP8AkpwUnrYdbWH+IeaSSPyQ7Q4udzud43eU0qEX1Gwxb2IQ8JFs0+vnLzBqnXEi8EiH90VMIyI83zaavB6Sy3Z7fSEebTV/4qB4dX5llYtpciGb1JzEGHo7SG5JwXmyIS642WrrUkPNUufsOoqhLDi9aUnOQIcVRDzcKhqYZW1JqeMfQnzkk2WyKb5qyx2SMPBcIfsxTzLRwj4I/ZWuYguAq3UmjsKbuiJzUi6OpMvji7a56UgdhNj/AGuZ+cq/cpTNj/Em2ZbTMxJYjrsxOd1v+V/stUJic7rf8r/ZO77S0wbTkwNcnvktZ90v2hJ5C2pmRbEmhB0Hi4QnRIiG7wjSWeFI4vlKCTyQYknt20RYmRbMuCJkbxrFixFwjZDCMRdhAihnhDiLNHRFafZ1uJrsZ3aF+E7dxpy2yodnhlpIfzfgymZ90RvG2WGyu7wqYxwx5BjGGeJDDTBQy3MommG7lngmG8Q4sThbTzxe6Ox7PFDihmgoxlhlK0F8LT9N44T0yJYSJwXHBabEe1AzdwhDkjedlQNiDtpE5WZS8uItkOGlx9tyqlxurYw62ZWMTNuVo+Zo4ClGFKKfl/klRZSb8md7NHrdcLEV2POpHa7ytKSydsbqW2yci6c7rOTpzLzbhYaSISZjCkewEIQhD/Ot7DmpOz5YW2hbap1jw3jhc5wuMij2Yr1M5aOuCNy0+YuUk2YtPC24JEQiTbxQgJQjFtyEI5/c49hVYuSuoq73tcsVoRupSlZdFe3uTuz8mLKHWYbeL34nnC848yfZJqRYxMyks0XOBpkSHwSzZ/rVaZKQnpx+4acYB4usszT5MuP61QsuURbE4cdBRhGPJnzRU8ayGtsOvMMBhqH85bcq8Ehgq3wlafJEz7QoR5yWg5PkLpVE5V41K3MMMDtColNPTMthmmHWS6Y4fnBziXxRWyXtNvnKtUoThpJNFmnXjNXi013ExGbbHCK3hN1KMSr485LBmR5ygcB6qIeiml5F9MpTQ0rAzfSTMo/PckANrDkyTY6qQSs7SlcJgS1ktgU1yNAWuW0l9nzhOOMt7ThCP3vqqTXNNBraq35LPDfkVQ8C3h/vHMOH4IVKbC0OLWjHv9iHGVlTpSl3FgC8twupnbmRpXsZpds4WOFzXHepYim0Zoectzb1XSp1ky+XUco5tBkcf5xLSb9SYZG0b/EA0iWHWqvMOFzDCFOeHHDTpz8WfMnZuJCK8+q08smjvqNVVIpiivo+Uk71rttlSRUrU9NEPg9JI32Rf5vRTErcyzF68hVG3W6sOJbjeadpqqAugVP2oRUVtyUNgbwBKIjrEIkVPkwUcjlSI64mHSIXB84oQgpVDYbNt9CzgkWh1X3R+bL7ST2tIuEw42My2V5hGsSaqLZEirjBVuOX7WqLol4JCWJS3IS29+PONjiFtsXC1S1ipxCWilSxTejIp1XTWdc1qM72RtoN1FvYiEsVQELgl5MVH7SkHRKl1ohLZqEV0FNvld0jtDSq7tqyxdfJgG26SIaqR2h6XGPxLlu1KkcPVyQT6d+r6Iuf+q66irxi/wA8SsX7AnncTEs5RqiQj5RDowlyZuwk8jYk42+LbzZCRDhEi2iLWpLNARV7vWPLMS2JoahEdWrWH41XtiyDb9o3l3hFyrFiw6ojiS43FQw0Ixf6rXfd3Eb/ANSVbq0FdvcrXdYsyc6izO9xKspmXb4E+Ewk4Rakc/1wVF71tcdqcGn3x/0rvSzbHFubcbBsRBwbykRERqpIdXNiTmdhDzQ8Ztv0L0b/AEzhVXwalPR3a5HD9u9tzliXKcdWly9D58F1Zpprnaf7x+n/ADWpuxbScbdfIXyFlup0zvCu29oiqjhFfQ87Dau8TDRF2bpv0Krd0NoXJkbNYaEJWWcZdtIxbEW3pkaX5SzKhhiphdvlD+4hyxXQPs+nCLk5ctkZUO1HVkoxj6vkVruQZKdT5IXHR/O5sRceq1m29ZtnwtqPfLNyKYOQWyJLxEVmN3NEaLSlqlnI7J4ZmbF4xqaYcGkC1XpnWZZLoDTeR7wwhtJ1ckycJtkRxOU3YltVc7mjmqjGPYGMU9WLaTUtwbTd60yJNtnVSThFiffxQ1jPi7EBGCjrVckbLmOpwzSuS9tsWxp1toiLWIixERdKMdKIOqPu5UN7TTg+M2X74JKeVDXa3fJb++ssvEpOawpPYhXtpSzfNvXPm2XCUUmMpw2W3fN9Kcdyy2b22hG7pHekyQkRbXB7ObsVK5g4/wC7HxRTx0rUZ22ZaIyI4VkZRLYQXoWy5peSux4rOD4YgjLLVGT85PASDpe5l42H7S2DZTpbIj4RJvxMV1JI0Z9ExgjIrEJNSYbELaMYeUS3DYQ7ThF4NI+lNeNgupKsLUfQiO9PWla3WC83EpuFkMDslH4SL+FJpuymqS1x8EvvZ0342L0VyVYRrVjVJR4MfBH7KxMLc3L0cCJEQt4RItYqedStMxBcHiVarJd7O5w7vTi+5DbNJvmE4TcE3vqEmED0FphBb3lqCCcgF0iKcH8nymcRuMAF3eN8KTb4kJU8IJQpEdbFpjCmEOKMYJHZ4qCzmWVlWplHJWA1JyNoTrMyQvHMNiLsvvS+cmRbvG8z9IiRURjEY6cMcy0cHWlRleKuUcZh1Whlbtrc05W+x6Gedv65YRKqql9wSIsRdcZYhhjFNdvexvmycbKStMRFtltql5wqhFvVESZbzkObkjy8WiOaFh5SZMPk5cNWXMhLsFwHU996zm6XBEi4OQmggWOrRGEOXsxTTaVgE5ci9Zts1Ms3I3UzaokQjtPXMxCL58lZZ4xV6WNzfqitSrTw1SFss3py0K0tj2NtruNtCM9J1s0jiOZIXxxVOPVBHhYR5sIQjDsRhpdrC3I8opRgpTfMmcq4VTgXrzgtlqk8y26zmE48sIZs9MM8YRhAoSZyzzbYeYCxraMHibcKsbedKpvtbouRNsY8sBjCEeVN8kUzLPC8Fg2qJDViOTykmR1aetunEC+NMjXUXeMWn3MmlTqSVpyTXehljuZW42X9kwlUJC68O1UPucadmPHGMOzyq4Nz237TalikrbBqZBsRuJhp0imfBevAGGeHI5nzx4ow5Y19PZXzg6tlzjXhZP2m59pR60MtLS2SnJfwcmpn/UZimcWael/MV0YTWq9C7LSnqqmwATDZvRpqHZqbGMYKIZRZIPzjfAMMS508HMNC8NPi54C58kVHMhrRtKemWXxm54JSQISnwes9yW3+4WJmWaJ1kYt54jnjRnhAc+mEYwz2LG1nSKomnfCunKfBEShqpuKxtZQ+fW/Syt56Fzs7s2lmvHS3W71fqVwzuWW4I/8AzKUHpOtU/Ze/clQ7n1uCP6dZpl0hmG/3qcu2qfaz+bL0JIdoPkWFsyLog56FiyxH/ivc6BYTeT9iGOZCW93ZZA9IimS81uEUss7Ia2R67PWUXgNz5fahBTmzpV9wanRIObVrF4uz8aWQkukmPEpftX55kscLHrJ+32K4nck7ebISYKzXh2hvZlkvFFxvN9cVIcjbAtArx60gaaYbpFsZd0nHH3tampwIQZaGGmMYZ4xqzQzaYqXy7tO0RJWM43q4qubspaWIgndxXd47+RDWw7dsr8Rnm7ElSHSZNEQ4YAV4XhFeYR+DjSCz8m5Nhxxw3X3atkibbEcWHE3DOXYUoOXBzEQ/Hq/7Jht6wHDGqXcHawFhq8FwdHywUkcRKMk4NJ76XGuhTmnGotPYWtuSgjSI6vOcIi8oopwkqT600NI7dNQj+0cUGycYcYvHJpqp0SpbF0ahGnWcEdVwo8kdOaHwp4jbxaxYR2atXxR2U6WMrW+aUn3Xt7iLAUFrCMfHmSWYeARxY49imkPK4y+LMmt+dqGnCIjqgOER8X96idsZRjslV4Kjc7lcI7SgnWqSjlb02LEaEIvMlruasknCa13RKkSGgRHFSVWsLY8UCLjip41ag04lUVkPlUWttbVOy5zo4viUuaew+KlxtJJqxn9m1XlaZJ5i12tUkkdnW9kqfBUbcLpLS9M04qlTymoqtuRLpO2acNReEnAraHnVfDi+0qptDKNtgSIyHDrYhHDzkpyYtF20mSfkWH5kBcuSJlojpcur278K7xfAp6eFqVH8sW/BEdTFQirzaXi7EoyjGz36hmJSWdItsmmxcHwXm4QIfiijc2yWGUfmX5RyqXcuOCdbJ5xmkiJwReHW0EOaMc0eznUetyWmZa6KdYflL0eC3wF0JdGriE+hGNWbTmU/3L6nJJ8hxBfCJauyIlql6VYeHq0rZk1flcrVcTSqQbi01ydmT2IjrEmyVl2BInamyIiLFUnWZhUJKATj2Ih1aSLzSXPdsV+BOMsidt+j3G9n4COJUtbWJPPNi7hqGnwkzWfZzDDxYhEatokzRnCGmgiq5y8yrhEQ1VFi8qpc/VrxxE1UlBXTT5t3XRGguyMvOX3J/YzIuzIUlrFd1a2sLhd7mqSO2E5VhMKe/UJfvUUyKLGJf9a0Pm0l/wBxTLLmyimrOmWG+u0XjH961jCHx8XjL1XsLEzeHg9Fmeuy7zje1cFT4srq7S897DHb0q+xLuvA0UwQiRCMvS654V25EYFmhnLNn00RhyqnslpQjlJ+x3TvZ1p+ZnW3TIapl9xwimyLnE5ULkIckHhhxDBWVuJWm/vLeU1WLrEaxB3rgtuEVTRwjtA4Lgx8KCrzdilnLMtyUn2cLTzgt54YaXqSOU8VxsX2Y5+0B2V0l5LNCa1Wviv+Hc5uMKeZOD0btr0fNfSxDnYdGnndEtqpbGg871pUhyukwMmrRl/0edqcLmsv6xD8eKObsiSaJaUvXBbpIhGknBHWcEipbYEtknI1Qz8kBcjyKhOk4y+nffkatOspQu9N+63O43Wq+TbDjw9em27tv3iULCTnRN2nNDot59pbZMaWxHoj9lPmVshQziuyOqpw6SGpzojm60MBEYQ5IDBRIrVEcJFSPO5vk6UmPwUqcY7vV/ncOwGMjWu1yWiFrwrzKi2JVOtk6PNFwmfOGEU3v2o1suCXm/aWWrQbLaHxSWU6MkaamiaWbPWIPXrLfPpb8J7zSu1Mci8oLB3223KSO95hy8ETJgSKmmohvqyiOeA/GqfKbHnCtmTtqC1aMs9stuebSVSdRpSc1zI6svkfgdStT7FPN/Z0/ZzreM+xzx8bg/tQgolZsyJstuDqkNSWQiuijhlbm/M5meJkn+lEobIS4iEvBIVug2ojAVtGJbJF5X+6bLDf+RGsTf8AayVULF2o1eO8hu+WXpzLEXpvZfdH4RYMfObz/WonRa/cvUmjVzftfoSIgSd0FHH37U9ymZYi5sxJ4fGJiYhH6kzT1r5SgXBS1izY1d02jIF/iQMfrUbnk6r1J40XPkn5okc9DhnPXWEUhfiqZyP3Q565JyYIXTJ+ZvKxqpIZlwSG80RphTmUg/pL7bLD4jlPmlBcpiaydST72dTRw0owiu5E1mU3TEVFHN0+U22nx8G7L98E3v7p8iRUi2/4wtj/ABqHixJeFIljq8tQUJe3SZTtbv8Ah+lJ/wCktrZaPxiFPjViJwpbFpSMFMpXJmzWHBmRlpFmaHhN8XEs2/eENLjl+MKqo1Fnjn01RVEyW6AblQg0IYSpIsX+y6LsRsYy0s5FtusmGSciICOMmmyLVh2Vr4B5k7dxmY9OFrvfkeGnhIRICEhLVIcQls6ygG7RkuM5LNzbWGakKqSqubyWcIb5snOIc0aThn7/AGVY86ztD433khKKsVaS2DDV9VJHMU5Kzw00iwV3qkUzLCXjVPDVnWG7PnmyHg5QS4PCU43iEsWESfzEObj0wzLpd8RIaSGr12SUXtbJ4iquKqem62XmuSh/5qpLD21SNN4tT0aRT0HREiv3JmULEQixaD93T0bmLuHP2cyf8jnyaeGdOetA2m3CFtl6beJhx0hqbIqYjegMCEqYwzRiQ5+xGRvZIuaxiJ86smG2xHnETbAUjCHLGK1FaEtKEIyoibrAk2ydPBMCRVFvZstUoxIoxdLFGPFTDQpkqcYZpO22mtyGFPiVLRjdddvMk7M+6VJzRuhEh4MCLh8XujlUeCHsQjDPHsQXhx8j1XyHw8Wr0h9Cru0rVdIicIqiLWqWqRtch1j85Y9apd6LTv1fmdBShGK1evdy8ifPnMhi66PZAqvN40hG3Dqu6SEulUJeSSYmreLDwicmbeEqRMRPwqSVSXgWVIdmZ4iw1eStrT5eEkzNqtU0iIj4I0r0NoBskomSq9tBxbMfBW0YDzk3xmR8LwV7gfN8lNIZDjDor0D/ADhTfB9zaHwVtF/ooTsJZMXkbZDSQ1DzY4k3z9hSzokPCBUOwX3s6zvhAPYujtKaniJXsRVacYxciOzW5y0QkO+3BAsXWxvOiVWfNT8MPSotNbkLbrxXNoGV2VLl602LbZdrvBPEfezRzcuZT/KO0zFsWWCpemSIRPtY+7PeLDi75QSeVmBlmRZDVHxiItoiLjIox0xj2SU9TGJStZFChCrUTlm06HPFmTDbFNZCNRbItj7nVrCHvmbTGHKpK5lK0Ijwg+UosO4NaTrpOv2k6RuFiIR/h4hHvQTrKbgb401Wg6dOKkxqHyVPVoZpayK2HqxhHvFTuUbfPEfCIR+0vck40644TzjptEwQtjJTLLTjbtXBuFvmXcbcCnRmzw1uVWBkpku/Ki227LWfNCO3GUuH/nGzjAi+GCs+w5aTGARNoW83G3SJD9mC18JhMJG0s92ujSt7sy8b2jitYqFk+qf2WhwK/khb1pkLwtPvMkRE0RC22yDYkQiRFngGrpzwXau4ZZnU/J6UlDlpaVelHQmXQlX3H70nCFp99xx3Od7EDhnzxjDihDRCCe/ycau35dve1y4Tt1n42wccvAG7JuIFSWzHOMYDmjDNGMEWdk5vZpwRflzrlnWCokJGVccqHBFx2VzR0RzFmhCEI0rey4VRfD0bft3JKy8znJYvFVH/ALi0V7Jb8tbvX0HPK3KSzWGyZtAmKC1mZghMXNnrRwjefFBRIrKkZabbKz2hZl50GptiDROtt8KEBOAs5qePTmzwzVKFZTbn1oTcyUybsiJEVWtNl5OBSnI2ynGrll823XWaWyoMiERvKhEW3MQjCHFnzLPx86UKLjGV79L6eJo4CFeVROasvzQnxDhJQTK2zqbx8dUi4QeaRfw8qm8/MtsNE87hAdYtbaUenbVlnGyIMdWsOsLg80hLMvP+1oQlFKTXn/g7jsl1YSc4RbXJ7EMaIRb8La6X3kqB6psfBGmmqrDzS+FLWpeVIhztvhiqogVQ4fj1VvYgw05UDZdE3Swt+CPpXMU6UFq5LmdHUqrpF3JDkqxRLDrVb5YeLnCREOH5FaCqiyrVBwnGGsRi225tEJFeDrEUOzpz5laYuQ5SHyl6b2U4PDRUHdI4DtFTVeTmrNkJysb3raTE7DQDuF3wY0tu/JC6P9nHspv3aclhtOyHmR0ORbpbOGEm3M4uSzols0TAt6eSBmpnlJZwzTBNZwqziQxLVhslVm05ogRQUI3SbVnLIsJ6ZahITJy0uV6EzMHLXoDh4KkMbtFMc0Yjpho5F0tGrmya/Mnaz6rp9jl8RQcJSaXyvW+z/wCSodz15xyzHpSbwO0uOCBFSW+5QqXm2qtoj4vCLsKyNzrIAn5cZmYMmgIqm7qmqYw0OO1GOFrYHswGMdtQ3IWTG1ZmWtR0TlmptlonZchwsPDU3OuSxcZC5GoBOOaPDOx4xXRkkbV2MG6RAREREdAiIwpGAw5IQhoTMRNxfyck3Z8/yxPh1GV1N2bSbXL8uMjeRUjSNTd5TynGr/ZeY5GWZ2hv6krygtCkaAjrccYciiL5lrYy8FSUadaqrubRVxWNo0JZYRTH8skrMHYAfjD0LX+S9nckRh819xRSZEtqtJYR8PWqq2vB49VXFgZ2/Wyku1FL9iXr/RNhyUkY8R/WHoWz8j5bZdcH4Ih91QsZgecQ+St7U17674pJrwVXpP2F/wCqQXOHu0Sr8i2uSZe+UPurIZJYiG/fhDNx8HSXi8aZ5OaEvdHfKUgsmdzFiMih0lVrU60Fzv5ItUMZRm1eNvNmv8kuxMOfGI/uWxvJkh93KPiqRNlnhngvaoOvPrb0X2NlUIc1f1ZHYZPF236o+lHUM+cMflH9ykSE3ivZeiHcFbv1I2Vju9H5UlnZF1ttx0h0NtuOFi7WJF/CpcoPun2zdMRkGjrnbQZmG2JeFNV0AZ5mYLmtAGjPHlMYcafS+eSVkQ13woOV37HMdkBSMyPNnZvzn3HP4l4ntVbZMuEm9b9LeHF4pfxJPOrmMbG1aa739TpMLLNRi+5fQYZ7WTG7VUXhJ9m4YkxTEcReEqaJjxE0ploaqTRSqS1k9AyVWOOqI4iIhEfCIqV0nlBlednlJNzDDVDz0lLOGDrnAlMuNsNkIk3C8Gshhyac3ZXPGQ8veWjIN7JTLBeS82X8Iq6N3P8A+WlMjrNNXw/3ko+My2XxXeddX2NQTptvq/oct21UfFjHufuWe8VPlU+dSmO2rUunaRYE8NVRGLeLm9binKTmBflm3R1X2m3R/aNi4P8ACmLKsRpadLV1eb66w/WtahBOVpGHVqNQzRNNuZTCwTdEobwuNC5UNyI4hEiHFGFWarNn7IxWLEypF+8qlHWrtpx4arkhcJvWbwxjTo05482Kj2VLIuyDRiQDcOONERCTuHXb1Yw5HeymHJqauHL4HGjNsXKRFpwbypshu6s+YRjVy6FNKhFL19vuJTrSlyN2XOVLjpMs3e9xEanGq7ypwiKmohgPFAeLNoqUOnbYbbEiqUeti2yaFy9LHU5VzhKqmmnjq7yqvLC0H3XxZpMSKmlohIXCItURb4yLNpzZs65HEKVaq7Lr+I9FwqjQoxjfkue+5d2Tcg/ab7LIHvdl6ot8U3mFsSIrloYwvDjdlCEIxGGcdMVrt7JObbcLerouhVSN6Vy5Ts1UwiJFHj0RWdzGDsjLSF6TYuskLxCThYSvLy5IW4RhxaI8nGp1az0oM2/MsiPCEV2dI1UltVc6PF4qt1qFClQzSXze9/sZdLF4mvinCDWVd2nMjGSORLpCTloTZMFssy9LjlPOcec0Dn5owj34qQnkoIj+bzlXReGn/EZ/fBR2etM6ipLCS8ylquDtLAm22dPBJLUl1nWa+2XCt4eeBC42Q+Lp+WEE7FIt7QqIy9tnzkoK2T52zUoJJliNiUNg02hyYbqwkoyxME5iIudhS+XDxkzKxkhwC0SMqcQiO1zqV6bmiq2qVqZiPqKzGYpq6KR2ESFZPimq17d3s224Tbhi8+LVIU1COKpynaGFPFDjqgvLs1hqTdMTL94xcG0AU8MLouE4QkQ4madFWtDTyqSjHUqY2VoJPqzdCdI518u0i2wPRw3jn1kMPFSsj5yZrCKq+c7Y+85/iF+6mCXOviI07XOVarG7LFCCjBI5yDdknv1Mf/uf5a9huzzn6mP/ANz/AC1Zchuev63VRwtYv7X51T0f3J7DIh3annfFbe/mLqZUEuUff+jj4Yim+creRUIbr9oclhvl4s3/AC1tHdctL9QzPkTf8lW0W58dNW/n6cWK7c2db3TkS6U3G98s3xWo6FREOJoiwjhq6/qxTHBLVxt5v7EsJ05uyl7FNjurWoX/APH5r5qb/lLYG6ba5auTs4XgtTv8hWa/uTuSM2Lkvbc208yQuNm0wOEtbVKYzF2M0dEYaIq3bNCcJllvfzRvCy2446UmXD1UlULLc6IslHsQjGGdW4UqKjefs39irVq2llhr7HKsd0i1/wD7cnvmJ3+Qum9zQhOzLOfMTamHJZh16XOqplxxu8cbEXM0cMSKGaMIRVTW9uCSm+Z2ddtWZdJ55x4gGWbFsSfcIibbqms+iJcqsiwCabbFiXfxsMt4SISIRG7bIip2oRpzw5KoLI7Ym6FNTorMr66vReDRqdlxp15OE5Wl0RJd0GNVmOc0ibUDsZ6FNPNVhTbQTksTBlTXTeRCmoDHws+iKhkzk81LNk4MyZ01YboScKnoiWce/GMIZlzeNoPG0VKHQ7DszFUcPSdGo7SctNH1Eb83S54y2HM1Cmx6DhU0hUeLCWGkdkqkSrUzUOdgYBVixUlT8i5qeET0TXPdG7khJXTWn+B2yQe/P3B50s4PhVUiOt4S5/yn3aGnX3pKaG0LPOSmXRF2QfbInqeBJtwX28zY4RLRy511BZNlSwjvkCofdG7qeLrZc2kc0OPl5dCqe2fY4We5NvPm+6RvuuOF1sRqcKrV2dJL0v8A01gZTpuCasktb9dvQ85/1RjKMasZO+1mtupAcit22zbPmymTftefqYcYFmbdYuRvHGSJ4bpnPXC5zQ7xRSDdL3WLItkW23RmWWhfbcIRpJwmxLhGxLNCmqGirkU/H2NVnkWF8vKFbg9jTZtVJOu+KQkS6hdlTUr516/0cs+0qFuXsNNleyJspgREZaZpbFtsREmxFttsaW2xG7wjCCf5b2V9lh/Y5n51sftNqCZb7gJSzhb0qdDWGscShxbkFoOVUShEPOUdWnXo2i27dLWa+g+nTw2I+dWv5p/Ut+0/ZVWa5/Y5vxX2fuJpj7Juzaqt5znzrP3FTtqbl840VJsUF0kla3NXy2afOTY42svlTt6fYV9k4f8AU1fzLq9s5Zvck586x/E2gvZN2XVVGTni/asfy1ULO5Q/zvML0pV/Q4+Q1Xoj4TZelWYVcTJ6S+hDPB4VLVfUtaHsn7M5LPni/byw/wCmvY+yos8f/pk5H/1Mt/LVSBuJTZarrZeC08X/AG86WyPse7XfquWjcp7DEyI+U5CEPrU3/u9/oV5YXBdf8lsNey1kR/8ApE19LY/kraPsvZL9TTH0tr+Sq4nfYs5QtSzk2bTAg3SRAL9Uzd7Tl03AoZh5dOflzaIqNjuIWoWqLRYRLrmy4NQkOjF8SbGjiKmq18Gn9GLOlhKektPG6L9lvZmywwzdR3fpjf8AJSqHszpb9TO/TG/5K53LcOtscQsCXgmJfu6S1FuN22P9kLD69hMeArdYP88yeGJopWjUXqjov25DRatkF8c4P8LKwfswObZMPpUf4WlzY7uV2yOtJueLi/cl0vuZWoI/oh1eKP2syY8HV/g/RjuPS/7i9UdAB7MFyoarJCiqF5mm4107VFTWar4dC27lmVc1aE3amVU712dHeUk0OJuWkmSvCbZq2YnTp443cY8q51HISevm2yYcGohHVqpqKmol1KzZLcnIMSTWEGGW2sPg4iw6NMao54/vV3s/CyzNzjbxRR7SrRyKKle/fexBAP8AOZ8RqL85qGrmkyyWrx99aZ0S5q9uwu52dEcOJkuliZEcXkrzNTbnOXDdqLLiZp/yZ2fZ7vhoNbIYptMc1HhC8Ik/zkyWKoRLxUxTDeIuli/8Vn6FsTFBK5KOJJDW2UjiT4issfcwhVa0hTsuC5zsLd44Xg6B4+RX3lxJg/ZrjZ6mcgL+7fAmyXNmTFqb0fYmaqaXKS8bWHwShUPjKebj27r1SetKUtWWagTc7dSjUuNPBANPCi+UYuHnHPnz7XIuq7MxEKdH5tzlO1sPUnXUorS3+S1NxO0L/J6zSIqjYZKUd519JOFLOVfG2Sebea/NnPey+8P8Q/UovM7odiWazSQlJNE5UVDAttE88VRFwccxGUaoxSMd2TJ18rgZsiJ/g6BbISIi2R062Hk5q0Fi6efMn1uZTwtRxccrFbcb1ibbIRLgwfETFshwEQOFSWeGiB5+LZgoW1Nti5TS1ip1WmcJeRyLWe6tknZ8y63ezwuiLss4JDOzLdJ03g0uPlDZHNHNnhyLaWV2Sm9hnSm7SBl14mxK9tMqnMVQ0tmUdklb+NpPW5Xhg6sdMoo3QrOYd3pPiw0RutC44dA3l9qEREOmqtooZ+yUeJNm5/GWG1KXWmBfmWnZZt0hEpm8Jupqlws5Dni3Toj7onWQykydtJkZKUnLQdFgrylorWZd/OXCpFx4YQJ4YnVmGOfNpTPa+T1lC/UE9NsvM0vUvT1oi43SWEibdxCOfRnzZu+oasoK1RX8babbbF6jCrKPDk/uJ5xtwXXBEmqW3MPXiGnWGodOHNSk09N0DjISqxVDUI4dbC5pSGalZEnidat6gnCIqQtJwWxqxUiJBGke8tGU9mXjFz1TaddKm5OdtCom29YrgXAGGKBDnjphxLExcqdaMle2t1+WNzs7Ph5pvazNmTj7c5Nk0V6LLN2UyYDUQtk5TSJDngJ5qo54w2U47o7EtZTjpOu0tDUQ4ScKnZppjGrRTHjz4tKNz+zGhbJjfbjREVThSFoSkyJEWG8cbcYIhHk49HFBS/KvJGTtJuWGYnJkrhoWaxuLx2kRbvHidlSqPMI6tMOXNnjFWMLhcI6WSco33638+hHjO0cSq+aCeXlbmrb+JU+RuXEnaFQy7hCbes06N25T2wR0wIe/COjlU2kHaiqSMNw2yheF9menGnWyqbMCkhIS6P5pD/dKMpbEnGn2Rs1rfA08JfTMoxVT7o22OL4YRhCCzsf2ZThHNTnF9yepq9ndsObyVItd7WnmPMthW8JlRyXG2Rpqs0Sj0Z6UL7UYLde2qOtZD5dEJmSL/WgsXgz290bPxVPckMJ6lanZ4dbzVG3Zi1f1HPF4LkoX2XkkfmLU/UdpeQyX2XkfDz2D4qnuSGZm+akjU8NQ/s+d66FF5yftf9R2l803/MTKVp2qPXbEtMKdoWKsPimpadCa/ayljKsZpWZK7DtOkbsRIyvnBKnVwuFtEnSZn+cLlPm1f5qqGrWtMH3LiyLTdaeK8wyjhE2Raw0jn5dKmVkWPlE+N4FlTYCWzNXMsXzbzkC+pJLC1OeVlqljKeXmXYe5zN1cFMsANO0D7hdLEJw416Pc8tCkvz5rPs8A/rbPu/ZU2yRt8J6UamYREXcTMy1UNTE20VD7URjpHMYlGGfjhEY8qe4RXUuGV5XzXM4TNB6pfUqccg57WKeappbLrD9VJYXP7RyR+pPljZMTjVIb7a1SAob2dprEuaT+bSOnvqbOMbUM8cXFm2T1xh/mgALsR7GfNyhql8cNCWVOEkEJuL0j+epXc/kLOOuk4c62RE5iLejlNJDwRU74wwhHRFLpHI6ZFhuubqJunEDDjbjYjhJseHjhhxw+NWBCFQ+F8q8tR7MOPWw7UOP5Uxwi1YlTSd7c/H7lfzWRj5jcjM0CRcIdxeE4QlU3iJzCGbscvKm4LFGWdcIWwrcIRJ0W7snBGouELNizx08cVaTw/JxeD2Ipkm5lzFQAkJFqlrCW1raKeVZfauEhVo2cnHwV7mj2diHSrXUU9N7EQGcuL1woQzU4fC2frTNF5twb4hqpqwEJDSRVVYs0OKrj051LX2TOoTaEsWIaRIVpiyI4d7DSOLV5xLkaWGq0abhTnq90+XkdDiK0KkL5Xm3urWIQLjjjzjm9qRqp1hxa1JD5ujpL3+cxKoZYIDSPuu1tYVNTYpxDLeLTh8lepd12qoGKSGktUVlw7Ad7yn6J/csUO0HSpqKi9O9cyNykiThCNJYcWGrxsXrqq4GGhpHCOqPGI81RuXmX3aRJq6EtYtYvm+L4lIZY4xwlhMdaGyUOcHRj9XEu+7HwMMNSeSTfK91YwO08dLEyjnha1+t+Zuuh5o+SK8PS4EJDERzFraFuWMy2MzMlpMaJnJyUPXaq8Y/SkwZISI8TX+I799SDMvOZScepa2Z+pDwYLlFehELT3PrLfKp+Tbdj0if/AIXIJOG5xYw6tnsf4pfacipvEV4JtGdvmHzR5ESlskLNbw7xlB5pXQkJfOZ6S73yJzl7Hlm9SWYDwWmx+zBOpNbK1U062IedtD4XOHvo59X6icR9TU2AjxCI+CIj9leJsYkOGrD0ksu+wtcYjDjIflgnqViGp8ysNkjNnAtFRDyw2f8AyTXa2TjWJ2XAcxVXjY7O0UWxHkz6afkUgdZEtUvJxfZXhsRa1jzR6RCPmqxCtkeaGj23KUqWaOSeq+ngRSXkg2RSiEoPNTraQNEVYFp2oQxCXS6Mf80ljDwfX4ldjXclcoOgoOw3lIDqpPM2aOt683/JO8fX1zLRNGpYVZX5kdSnG2qInP2WI4h04hLZ8ri1uSKQTm0OItoatUS7XTzY4k+Wg95vr6+DBNDg4Sq5tVX2fkWpSba1KdtdCEDk4M5MvCLl06LeEqahIRIhEXB71WiPSSS09z60BqoFp4ei5dkXiuQUjyQc/rFyocV24JFzsTZVdnSrFCC4Dt+nH4lu3NI9A7FrSWHSvyZzraGRlpDrSh9Ki7cHzYqOWjYU4JU72f8AILyV1Q6KapxoatlYfDibHHZyy/Y853M/82S9StizlX6M6PhDSui55oUxTifGnATjMrzJuyivN7TrXBTLZNkJFipqHhBIdLZjERjCMOUexngqf/KTqJb86W9t8b0dcYONVyThAVIvnTCMBMgoz9mI5+VXZlZbIy0y28Q1kLeER2sSglv5MTM489vhoWXbacGfEqcLbYjdtjT34LpqVOl8LGPXV+pgzlUeJlJ/pdl5o9MbqspbT7MhMShS4uOCQnGZKm9bEibHg2qtMdGiEfjVuZCbndmOky9NThS7ouXjNLrk3KXglSP56UYBXGGmkoD8eaObnqeyGKxn5afImpq5cqGVK8En8JDhphhzceeObVT1YWVtL9/ZEyUqbhUuSRERaxERCTJZ7wc+nRnhi4oRVeGWCva/53lipGTdoy+xfltexSk5t9+bG15oSmXCdwy0oTfCc2mMKod/lS2PsaxGy5ay4WnWEs+4+JuylNROVYSFp/DmvOOEVF9zzdhcaJls/wA0IiEnAjwlnPatRCx7gUey1EYQjppjxK+Mn90KWdbHfFMufOA79gvHbhU0fQOEPhjxqeNWM9Fb0SZXnxYfq9ehQmWG5vPZNWXOuSk4JBO3DR3L87ZpsOM1E2+0+JkInGqmNUOIc0IjnjnhO5dlaUu7cZRNb9CbvGnJqeJufZFikiKq0GzJ5kRDRmjoxcmddqSk5KTrbl0bE011twQJt5vwXA00/BFMc5udWQ5V+YygVVVUMMjrDSWrDWxK0sRKNkna3QrcKlO7lzfXwKTnNwOwLTYbm7Km5yRamWrxoWXd+SJtuDhuxfheNQ5NEY5uwtmUvsdxnLgnbQuN6SwywlLiJNk23TieIgqEsOnRmV75NZLMWfKMSUkNEvLN3bIRqKkaic1ijGJaSLlVU+yRyfnDkCfkN8g6w8245cuOUuMDURcGMcRQO7LN0eXMqtavnkk473dtf787lqhCaTyyvtf80GXIfcAKz3nX5e0hmL9gWCvasIi5eVCTLcI1RitJexrEiIhnnxqKrRaFojrfEqNsjdPtmWmRIpt2Yuy1HXHBc8rQQrorc13XJyeFt+YaaZleDbEXb6/mXKqXXG5nQ02AwqjmKEYx7KqThq3G3g9GTRqyWk4+a1QyOexxdHVtCcp6Nqzo/aBOk1uITLtm9Td+GIYfzjfT7k/TfX12UyTdVEY7PF8ivSTeF1sXAKofslzSHZJbCa/8lC5N/tXv9ywmtypbV3LJuZknJI54Wbxm4F5knt8tDSI3jbxBr5h0x5ao9lOFg7nLstLMShWgR3DLbIm62Tjzt2Os44TkLw48uhWVACWIBV0lXd+VvYkuiFDkQ73Z/gf/AOi9jkW7tTmHosYvOcUyg2X/AB/5LEY+L4X3k3Xb2FuiMs5Ftbb8yfjC3/2wSqVyTk28V1WXOeIn/Ncjm+pPsYIoJKnLp7aA2hO1LNtjSAiI80BpHyRXq7FbaVpdqqpESLnEJCJDh1qS1kqhOTGuokcabsGR5TdtPTNmWhZ9Ey2245/WskwV+23duVDeZy0Dn4lBnslrQb/+ryZDzmrZbcxeCLkIj8ipe8WYOLcr4pVHdwjfe7+9jOw+DdKKi53S7l/Zc8vZlqVUjbghzf60IfJ4bMnlizrcEamspxAxxN/1yQlUOIdZyMOPs6FQEX1mD/hKtGo1+1e/3LUqMH/wvsdMWTlrl5hEbYknf/yJyyDLxiI4KS2ZlfugmQiE5Y7pFq/nNkfwvrkKEwswmVNCtTj+qmn5y/w0Q1MNJ/pkl5HarOVW6HiEnbDiQ6wxmrNgXmzCYbQ3WssGHyYecsa9b1hvWSHxXG5jMS5K32XfWIzChxbp1o5VTUXveX0cmPw1GVOV5yutkre51y3uyZVco2GX7TF5s0lDe7VlPytWH5b38MwuPN8L2M0XJUsp4GXRr0/s0eJD8Z2Qxu429tNZP/PvD/rRS1rdttvlayf+lv8A31xPvhet8pvwEv5ez+4qqw29zuqyN2O23XBbFvJ8SIqajm3xESLnFXhU+aykylOnNHJcj2aZqbLZ2V82AmSEqhIs/ZS123HzGk33SHmxMtn41qYP/YjlaT73f6XM7F0XVd4Sy+9/M+kMLbys5mTfxTM8swtzKnajk0HwzE8X7182oWu72xz5wvSsRtZ3nueUXpV74mH8I+/3KXwlb+Z9KAtPKwuXJqHjz5f5GtJ2llhyfk3/AO/j/rL5vwtl3trvzjnpR1af7a75bnpR8TD+Eff7iPB1f5fnofRSZtHLWmoTycH9nOl/rpjnrdy17uyeD/00z/qOxXA0bZf7a78456VrO0nC4zc8ovSnfFUv+2vdf5G/BVn+/wBrncU7beXWzatgw8FgR/7kc6Zpie3QD1LasrxAlB/gzrjIp8+cXlIhPFzi8pROvSb/APjXq/uTxwlRL9Sv4HX0xZ26KXFbcr4jsu3/AKeZa5uxt0Okarea8WZlhLzWVyRC03e2OfOF6UdVHe2O/OF6U+Negv8A6l6v7kcsHWf71/8Ak6hdyYy6cL84tknRLZG0xb8WkYD8iWZMZKZRSzwvmLr5CWuMy3M+UROasVyj1Sc7YflF95bAtd0dV10f2jnpT1iqSf6Pd/cY8BWtbNH0/s+l+SFqOPsi3MNExMU4hOkbynWIdOJSCEu5sj9n0r5YjbL+tfu4dXhHMPg6VuhlFM90zPzrv30541dF/krf9Jl/Je59SIslzSTdPFrYh8YhH7UV8yPykm+6Zn593761OW0+Ws++XwuH95Cx9ugkux5S/cj6MWq5rUkOHDrN4ulx/F8iQuu0tbNVJYah9PKvnidrOlrOu/OOeleY2o72135xz0qzHtqSVsvuN/6Av5+39ncATt26TgOCBiOEhcbxCVOtp+WEU+M5XuiPXGC8IR/hOC4C6ouc8/KJZhaDnPPyi9Kwu0M2JqZ9Fp4m7gsPHDwy3ud+wy0Mar3exjs0kTf8ZJHMZbD2tr53/ZcHxtFztrnll6V56ouc8/KL0rP+Dlv+epczI7Zn8sS2W2vnCL9yYJ/KhwtUWh8ov3rkbqi521zyi9KOqTnbD8ovvJywkl1DNE6lsazDtC02ydxBSI6tIiNRVd5XlP5MsPkwRDiZbFtuntY6q+d8bafwwv3cOrwrnpXpvKCaHVmX4ftnfvrQozlCOVq5Sr4bPK8ZWO0N1fc8cp33KiTxCI0h2shw1U83MRR+Fc1ZS5MONuDesFLuiWuIONkJYtUh08XKoL+UU33XM/PvffRC35nF+cv4tbhHI/aKKdKpdfp9ySjTcNJSv5Fh2Na83LE2T7Q2hLtiQ0YW51seDpK8zZnKbsYQzw2VKbIy4k2nL6SnjlHRux3pPC41SJOFeNtvDn0RwQjGHJn4sypArZf5X3PLJI5iaiesVXhYi8pVnSzPX2LGZLk/J8jvyzssSkRYctSR3vNXgtsWgDrbcsV43URC6xGkms1Og4aYdmMc6VH7IiUFwm7uWKmrFv5ilynaGrN9a4fd3SbZNttp20H3mmW7tpt4r0GwpEaREtGq2MPgFI/yxmdoZY/DlmS/co+HXv8Ar025kTVFrWOvcd6y3sgJQixSwkPvU3LufvTtK7tUietLP+LdkPlVr54FlU7TTcyv0ZsfsohlW/2uX+a/5J9q6/d7f2M4dH+L9TvLKW1slLS/TbNqItZ3exNvD0r5mECL5U02DIZNyZDvWengZEiJuXmBJ5gbzWEam6xGPHmzxzLieGWD/a5f5r/mtjeXEyPuUtHwmi++iXxElZy9h64a39T6LWNugWHLNk2D9NRXhYHiJxykRqqKHYEUrLdYsbt5l4LRL5xwy9me0yf0f/mt/wDSNN8dzI/RR+8ktX/l7DMlPZ+p9ET3XrI7afzRLU5uvWR2x3wrsvQvnr/SXPbLcmPgybP8S9R3TrQ5snDwZOXTXCs+vsOSp959Bi3YLKp1nCLpDSX+Sx/TFZVVIuc6oiKn7UF8/wAd1a0+dLfQ5bD4OFaz3U7X7eA+DLSw6v7NN4VXcX/b2Z9Aw3W7LqLhP8QaSSab3Y5ERwCJR2RvP4tC4JDdWtnuoPo0p/L41gd1a2aqt+Qq4v0aU+zc5kcKrv8AnoFobHc09u1MDqMV9HEReLd50w2ju1Th1b1kXS8Bhwqf2hQzfWuPC3Ybe/WBj4LUoP2WMK0zO6tbjg0naD9PRu2/OZAYpHRqvr7/AND0obDeNl2byzTnkgiFlWb3YfkB95RStFatcKX8voHGj/El/UezO7nPmw9KxCxbO7uLyW/SolBxZvIo4cv5fQONDYl/USze7i8lv0o6i2b3cXktffUQvIovIo4ctxePDYmHUOze7i8lr76Oolmd3F5LX31D7yKLyKOHLf6Bx4bEw6iWb3cXktffXiNiWf3d5rf31EryKL6KOHPf6C8eGxK42LZ/dnmt/fXnqNI92ea399Ra9is3xI4c9/oHHhsS4LCs8v7dT+zD76x1Bs/u75QD76iN9FF7FGSf8vZCOtDYl0bAke7h8lv76HMn5PDTPDTtRiIa3giaiN9FF9FGSW/sg40NiX/k7J/rAPmx/mLBZOSf6wb8kfvqI3xIvooyS39kHGhsS2GTcp3c35I/fRDJuV7ua8n/AJqJ3xIviRknv7BxobErjk1Ld3N+SP315PJuW2ZxsvF/5qLXxLF8SMk9/YONDYljWTLBU/njQ1dmnV6WPD8CweTLA/2xr18dRS+JF8SMk9w40NiURyba7rb8n/mvQZLtkJFvtqkfBHza86it8SL4kZJ7hxqexJ/yaa5JsPJ/5ry5k42P9pb9fjUaviRfElyT39heNT2JF1Ab7pb8n/dBZPt90t+T/uo7fEi+ijJPcONT2JB1ADt4eT/ujqAHbw8kkwX5Ig+SbknuHGp7EjmclybprdbGoah6Q85aOoI9tDzkyRmCRvgkZJ7hxqew8xsD31vzkRsD31vzkzb4JG+CS5J7hxKew89QffQ85eY2F76HnJnhMEs75JJknuHFpfxHbqL74HnLx1FLnh53oTXvglnfBJ2We4jq09h06il2wPO+6iNilzw870Js3ySN8kjLPcXiU9hwjY5c4fO9C1P2aQ8ZD8VXoSPfJI3ySFGe411Kex7jL9LzS9CIsdL6i9C13xIv4p1pEeaJ6uekPnehFz0h870LxfRRfRS6iXiernpD53oWbrvj6/EvO+CRvgkfMF4nuDHSFZjLdIV43wSzCZLspLSFzRPW9+kKIS3SHyl530SN8ki0hc0DZvXpD5SzvXwfKXmE85yRXjfJJtpDs1M270j0flRvQu98q1b5JG+iRaYZoG2MmXqQo3mXrFa99n2UQnD5yW0gzUu8TIQhSFYEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCAP/2Q==\n", + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import YouTubeVideo\n", + "YouTubeVideo('sjfsUzECqK0')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the nascent video capabilities of modern browsers, you may also be able to display local\n", + "videos. At the moment this doesn't work very well in all browsers, so it may or may not work for you;\n", + "we will continue testing this and looking for ways to make it more robust. \n", + "\n", + "The following cell loads a local file called `animation.m4v`, encodes the raw video as base64 for http\n", + "transport, and uses the HTML5 video tag to load it. On Chrome 15 it works correctly, displaying a control bar at the bottom with a play/pause button and a location slider." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "