You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-`ndenumerate` allows you to iterate with both the index and the value of each element.
67
78
- It gives index and value as output in each iteration
@@ -74,7 +85,7 @@ for index,value in np.ndenumerate(arr):
74
85
print(index,value)
75
86
```
76
87
77
-
**Output** :
88
+
#### Output
78
89
79
90
```python
80
91
(0, 0) 1
@@ -86,7 +97,6 @@ for index,value in np.ndenumerate(arr):
86
97
## 4. Iterating with flat
87
98
88
99
- The `flat` attribute returns a 1-D iterator over the array.
89
-
-
90
100
91
101
```python
92
102
import numpy as np
@@ -96,7 +106,7 @@ for element in arr.flat:
96
106
print(element)
97
107
```
98
108
99
-
**Output** :
109
+
#### Output
100
110
101
111
```python
102
112
1
@@ -105,5 +115,6 @@ for element in arr.flat:
105
115
4
106
116
```
107
117
108
-
Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency.
118
+
Understanding the various ways to iterate over NumPy arrays can significantly enhance your data processing efficiency.
119
+
109
120
Whether you are working with single-dimensional or multi-dimensional arrays, NumPy provides versatile tools to iterate and manipulate array elements effectively.
0 commit comments