You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#### A little note here : `isnull()` means having null values so it gives boolean `True` for NaN values. And `notnull()` means having no null values so it gives `True` for no NaN value.
125
+
`isnull()` means having null values so it gives boolean `True` for NaN values. And `notnull()` means having no null values so it gives `True` for no NaN value.
132
126
133
127
## 2. Filling missing values using `fillna()`, `replace()`.
**In order to drop a null values from a dataframe, we used `dropna()` function this function drop Rows/Columns of datasets with Null values in different ways.**
214
+
In order to drop a null values from a dataframe, we used `dropna()` function this function drop Rows/Columns of datasets with Null values in different ways.
Now we drop a columns which have at least 1 missing values.
272
263
273
-
**Here the dataset becomes empty after dropna() because each column as atleast 1 null value so it remove that columns resulting in an empty dataframe.**
264
+
Here the dataset becomes empty after `dropna()` because each column as atleast 1 null value so it remove that columns resulting in an empty dataframe.
0 commit comments