Skip to content

Commit aa0a001

Browse files
Operation on numpy (animator#464)
* Updated List of sections * Updated index.md Added info about how to install NumPy in a system. * Added installing numpy.md file and updated the index.md * Added installing-numpy.md file and updated the index.md * Create installing-numpy.md for installation * Update index.md Added operations-on-arrays.md * Create operations-on-arrays.md * Update index.md * Update index.md * Rename installing-numpy.md to installing_numpy.md * Rename operations-on-arrays.md to operations_on_arrays.md * Update installing_numpy.md * Update index.md * Rename installing_numpy.md to installing-numpy.md * Rename operations_on_arrays.md to operations-on-arrays.md * Update operations-on-arrays.md * Update operations-on-arrays.md * Revert "Update operations-on-arrays.md" * Delete contrib/numpy/installing-numpy.md * Update operations-on-arrays.md --------- Co-authored-by: Ankit Mahato <ankmahato@gmail.com>
1 parent b2cdbf4 commit aa0a001

File tree

2 files changed

+282
-0
lines changed

2 files changed

+282
-0
lines changed

contrib/numpy/index.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,3 +3,4 @@
33
- [Installing NumPy](installing-numpy.md)
44
- [Introduction](introduction.md)
55
- [NumPy Data Types](datatypes.md)
6+
- [Operations on Arrays in NumPy](operations-on-arrays.md)

contrib/numpy/operations-on-arrays.md

Lines changed: 281 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,281 @@
1+
# Operations on Arrays
2+
3+
## NumPy Arithmetic Operations
4+
5+
NumPy offers a broad array of operations for arrays, including arithmetic functions.
6+
7+
The arithmetic operations in NumPy are popular for their simplicity and efficiency in handling array calculations.
8+
9+
**Addition**
10+
11+
we can use the `+` operator to perform element-wise addition between two or more NumPy arrays.
12+
13+
**Code**
14+
```python
15+
import numpy as np
16+
array_1 = np.array([9, 10, 11, 12])
17+
array_2 = np.array([1, 3, 5, 7])
18+
result_1 = array_1 + array_2
19+
print("Utilizing the + operator:", result_1)
20+
```
21+
22+
**Output:**
23+
```
24+
Utilizing the + operator: [10 13 16 19]
25+
```
26+
27+
**Subtraction**
28+
29+
we can use the `-` operator to perform element-wise subtraction between two or more NumPy arrays.
30+
31+
**Code**
32+
```python
33+
import numpy as np
34+
array_1 = np.array([9, 10, 11, 12])
35+
array_2 = np.array([1, 3, 5, 7])
36+
result_1 = array_1 - array_2
37+
print("Utilizing the - operator:", result_1)
38+
```
39+
40+
**Output:**
41+
```
42+
Utilizing the - operator: [8 7 6 5]
43+
```
44+
45+
**Multiplication**
46+
47+
we can use the `*` operator to perform element-wise multiplication between two or more NumPy arrays.
48+
49+
**Code**
50+
```python
51+
import numpy as np
52+
array_1 = np.array([9, 10, 11, 12])
53+
array_2 = np.array([1, 3, 5, 7])
54+
result_1 = array_1 * array_2
55+
print("Utilizing the * operator:", result_1)
56+
```
57+
58+
**Output:**
59+
```
60+
Utilizing the * operator: [9 30 55 84]
61+
```
62+
63+
**Division**
64+
65+
we can use the `/` operator to perform element-wise division between two or more NumPy arrays.
66+
67+
**Code**
68+
```python
69+
import numpy as np
70+
array_1 = np.array([9, 10, 11, 12])
71+
array_2 = np.array([1, 3, 5, 7])
72+
result_1 = array_1 / array_2
73+
print("Utilizing the / operator:", result_1)
74+
```
75+
76+
**Output:**
77+
```
78+
Utilizing the / operator: [9. 3.33333333 2.2 1.71428571]
79+
```
80+
81+
**Exponentiation**
82+
83+
we can use the `**` operator to perform element-wise exponentiation between two or more NumPy arrays.
84+
85+
**Code**
86+
```python
87+
import numpy as np
88+
array_1 = np.array([9, 10, 11, 12])
89+
array_2 = np.array([1, 3, 5, 7])
90+
result_1 = array_1 ** array_2
91+
print("Utilizing the ** operator:", result_1)
92+
```
93+
94+
**Output:**
95+
```
96+
Utilizing the ** operator: [9 1000 161051 35831808]
97+
```
98+
99+
**Modulus**
100+
101+
We can use the `%` operator to perform element-wise modulus operations between two or more NumPy arrays.
102+
103+
**Code**
104+
```python
105+
import numpy as np
106+
array_1 = np.array([9, 10, 11, 12])
107+
array_2 = np.array([1, 3, 5, 7])
108+
result_1 = array_1 % array_2
109+
print("Utilizing the % operator:", result_1)
110+
```
111+
112+
**Output:**
113+
```
114+
Utilizing the % operator: [0 1 1 5]
115+
```
116+
117+
<br>
118+
119+
## NumPy Comparision Operations
120+
121+
<br>
122+
123+
NumPy provides various comparison operators that can compare elements across multiple NumPy arrays.
124+
125+
**less than operator**
126+
127+
The `<` operator returns `True` if the value of operand on left is less than the value of operand on right.
128+
129+
**Code**
130+
```python
131+
import numpy as np
132+
array_1 = np.array([12,15,20])
133+
array_2 = np.array([20,15,12])
134+
result_1 = array_1 < array_2
135+
print("array_1 < array_2:",result_1)
136+
```
137+
**Output:**
138+
```
139+
array_1 < array_2 : [True False False]
140+
```
141+
142+
**less than or equal to operator**
143+
144+
The `<=` operator returns `True` if the value of operand on left is lesser than or equal to the value of operand on right.
145+
146+
**Code**
147+
```python
148+
import numpy as np
149+
array_1 = np.array([12,15,20])
150+
array_2 = np.array([20,15,12])
151+
result_1 = array_1 <= array_2
152+
print("array_1 <= array_2:",result_1)
153+
```
154+
**Output:**
155+
```
156+
array_1 <= array_2: [True True False]
157+
```
158+
159+
**greater than operator**
160+
161+
The `>` operator returns `True` if the value of operand on left is greater than the value of operand on right.
162+
163+
**Code**
164+
```python
165+
import numpy as np
166+
array_1 = np.array([12,15,20])
167+
array_2 = np.array([20,15,12])
168+
result_2 = array_1 > array_2
169+
print("array_1 > array_2:",result_2)
170+
```
171+
**Output:**
172+
```
173+
array_1 > array_2 : [False False True]
174+
```
175+
176+
**greater than or equal to operator**
177+
178+
The `>=` operator returns `True` if the value of operand on left is greater than or equal to the value of operand on right.
179+
180+
**Code**
181+
```python
182+
import numpy as np
183+
array_1 = np.array([12,15,20])
184+
array_2 = np.array([20,15,12])
185+
result_2 = array_1 >= array_2
186+
print("array_1 >= array_2:",result_2)
187+
```
188+
**Output:**
189+
```
190+
array_1 >= array_2: [False True True]
191+
```
192+
193+
**equal to operator**
194+
195+
The `==` operator returns `True` if the value of operand on left is same as the value of operand on right.
196+
197+
**Code**
198+
```python
199+
import numpy as np
200+
array_1 = np.array([12,15,20])
201+
array_2 = np.array([20,15,12])
202+
result_3 = array_1 == array_2
203+
print("array_1 == array_2:",result_3)
204+
```
205+
**Output:**
206+
```
207+
array_1 == array_2: [False True False]
208+
```
209+
210+
**not equal to operator**
211+
212+
The `!=` operator returns `True` if the value of operand on left is not equal to the value of operand on right.
213+
214+
**Code**
215+
```python
216+
import numpy as np
217+
array_1 = np.array([12,15,20])
218+
array_2 = np.array([20,15,12])
219+
result_3 = array_1 != array_2
220+
print("array_1 != array_2:",result_3)
221+
```
222+
**Output:**
223+
```
224+
array_1 != array_2: [True False True]
225+
```
226+
227+
<br>
228+
229+
## NumPy Logical Operations
230+
231+
Logical operators perform Boolean algebra. A branch of algebra that deals with `True` and `False` statements.
232+
233+
It illustrates the logical operations of AND, OR, and NOT using np.logical_and(), np.logical_or(), and np.logical_not() functions, respectively.
234+
235+
**Logical AND**
236+
237+
Evaluates the element-wise truth value of `array_1` AND `array_2`
238+
239+
**Code**
240+
```python
241+
import numpy as np
242+
array_1 = np.array([True, False, True])
243+
array_2 = np.array([False, False, True])
244+
print(np.logical_and(array_1, array_2))
245+
```
246+
**Output:**
247+
```
248+
[False False True]
249+
```
250+
251+
**Logical OR**
252+
253+
Evaluates the element-wise truth value of `array_1` OR `array_2`
254+
255+
**Code**
256+
```python
257+
import numpy as np
258+
array_1 = np.array([True, False, True])
259+
array_2 = np.array([False, False, True])
260+
print(np.logical_or(array_1, array_2))
261+
```
262+
**Output:**
263+
```
264+
[True False True]
265+
```
266+
267+
**Logical NOT**
268+
269+
Evaluates the element-wise truth value of `array_1` NOT `array_2`
270+
271+
**Code**
272+
```python
273+
import numpy as np
274+
array_1 = np.array([True, False, True])
275+
array_2 = np.array([False, False, True])
276+
print(np.logical_not(array_1))
277+
```
278+
**Output:**
279+
```
280+
[False True False]
281+
```

0 commit comments

Comments
 (0)