Skip to content

Commit ab6428f

Browse files
Update Introduction_to_Pandas_Library_and_DataFrames.md
1 parent f8f8686 commit ab6428f

File tree

1 file changed

+25
-122
lines changed

1 file changed

+25
-122
lines changed

contrib/pandas/Introduction_to_Pandas_Library_and_DataFrames.md

+25-122
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,5 @@
11
# Introduction_to_Pandas_Library_and_DataFrames
22

3-
4-
> Content Creator - Krishna Kaushik
5-
63
**As you have learnt Python Programming , now it's time for some applications.**
74

85
- Machine Learning and Data Science is the emerging field of today's time , to work in this this field your first step should be `Data Science` as Machine Learning is all about data.
@@ -110,42 +107,15 @@ You can also create a DataFrame by using `pd.DataFrame()` and passing it a Pytho
110107
# Let's create
111108
cars_with_colours = pd.DataFrame({"Cars" : ["BMW","Audi","Thar","Honda"],
112109
"Colour" : ["Black","White","Red","Green"]})
113-
cars_with_colours
110+
print(cars_with_colours)
114111
```
115-
<table border="1" class="dataframe">
116-
<thead>
117-
<tr style="text-align: right;">
118-
<th></th>
119-
<th>Cars</th>
120-
<th>Colour</th>
121-
</tr>
122-
</thead>
123-
<tbody>
124-
<tr>
125-
<th>0</th>
126-
<td>BMW</td>
127-
<td>Black</td>
128-
</tr>
129-
<tr>
130-
<th>1</th>
131-
<td>Audi</td>
132-
<td>White</td>
133-
</tr>
134-
<tr>
135-
<th>2</th>
136-
<td>Thar</td>
137-
<td>Red</td>
138-
</tr>
139-
<tr>
140-
<th>3</th>
141-
<td>Honda</td>
142-
<td>Green</td>
143-
</tr>
144-
</tbody>
145-
</table>
146-
</div>
147-
148112

113+
Cars Colour
114+
0 BMW Black
115+
1 Audi White
116+
2 Thar Red
117+
3 Honda Green
118+
149119

150120
The dictionary key is the `column name` and value are the `column data`.
151121

@@ -194,42 +164,15 @@ age
194164

195165
record = pd.DataFrame({"Student_Name":students ,
196166
"Age" :age})
197-
record
167+
print(record)
198168
```
199-
<table border="1" class="dataframe">
200-
<thead>
201-
<tr style="text-align: right;">
202-
<th></th>
203-
<th>Student_Name</th>
204-
<th>Age</th>
205-
</tr>
206-
</thead>
207-
<tbody>
208-
<tr>
209-
<th>0</th>
210-
<td>Ram</td>
211-
<td>19</td>
212-
</tr>
213-
<tr>
214-
<th>1</th>
215-
<td>Mohan</td>
216-
<td>20</td>
217-
</tr>
218-
<tr>
219-
<th>2</th>
220-
<td>Krishna</td>
221-
<td>21</td>
222-
</tr>
223-
<tr>
224-
<th>3</th>
225-
<td>Shivam</td>
226-
<td>24</td>
227-
</tr>
228-
</tbody>
229-
</table>
230-
</div>
231-
232169

170+
Student_Name Age
171+
0 Ram 19
172+
1 Mohan 20
173+
2 Krishna 21
174+
3 Shivam 24
175+
233176

234177

235178
```python
@@ -269,53 +212,19 @@ record.dtypes
269212

270213

271214
```python
272-
record.describe() # It only display the results for numeric data
215+
print(record.describe()) # It only display the results for numeric data
273216
```
274-
<table border="1" class="dataframe">
275-
<thead>
276-
<tr style="text-align: right;">
277-
<th></th>
278-
<th>Age</th>
279-
</tr>
280-
</thead>
281-
<tbody>
282-
<tr>
283-
<th>count</th>
284-
<td>4.000000</td>
285-
</tr>
286-
<tr>
287-
<th>mean</th>
288-
<td>21.000000</td>
289-
</tr>
290-
<tr>
291-
<th>std</th>
292-
<td>2.160247</td>
293-
</tr>
294-
<tr>
295-
<th>min</th>
296-
<td>19.000000</td>
297-
</tr>
298-
<tr>
299-
<th>25%</th>
300-
<td>19.750000</td>
301-
</tr>
302-
<tr>
303-
<th>50%</th>
304-
<td>20.500000</td>
305-
</tr>
306-
<tr>
307-
<th>75%</th>
308-
<td>21.750000</td>
309-
</tr>
310-
<tr>
311-
<th>max</th>
312-
<td>24.000000</td>
313-
</tr>
314-
</tbody>
315-
</table>
316-
</div>
317-
318217

218+
Age
219+
count 4.000000
220+
mean 21.000000
221+
std 2.160247
222+
min 19.000000
223+
25% 19.750000
224+
50% 20.500000
225+
75% 21.750000
226+
max 24.000000
227+
319228

320229
#### 3. Use `.info()` to find information about the dataframe
321230

@@ -333,9 +242,3 @@ record.info()
333242
1 Age 4 non-null int64
334243
dtypes: int64(1), object(1)
335244
memory usage: 196.0+ bytes
336-
337-
338-
339-
```python
340-
341-
```

0 commit comments

Comments
 (0)