-
Notifications
You must be signed in to change notification settings - Fork 250
/
Copy pathspecial.js
510 lines (455 loc) · 12.8 KB
/
special.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// Special functions //
(function(jStat, Math) {
// Log-gamma function
jStat.gammaln = function gammaln(x) {
var j = 0;
var cof = [
76.18009172947146, -86.50532032941677, 24.01409824083091,
-1.231739572450155, 0.1208650973866179e-2, -0.5395239384953e-5
];
var ser = 1.000000000190015;
var xx, y, tmp;
tmp = (y = xx = x) + 5.5;
tmp -= (xx + 0.5) * Math.log(tmp);
for (; j < 6; j++)
ser += cof[j] / ++y;
return Math.log(2.5066282746310005 * ser / xx) - tmp;
};
/*
* log-gamma function to support poisson distribution sampling. The
* algorithm comes from SPECFUN by Shanjie Zhang and Jianming Jin and their
* book "Computation of Special Functions", 1996, John Wiley & Sons, Inc.
*/
jStat.loggam = function loggam(x) {
var x0, x2, xp, gl, gl0;
var k, n;
var a = [8.333333333333333e-02, -2.777777777777778e-03,
7.936507936507937e-04, -5.952380952380952e-04,
8.417508417508418e-04, -1.917526917526918e-03,
6.410256410256410e-03, -2.955065359477124e-02,
1.796443723688307e-01, -1.39243221690590e+00];
x0 = x;
n = 0;
if ((x == 1.0) || (x == 2.0)) {
return 0.0;
}
if (x <= 7.0) {
n = Math.floor(7 - x);
x0 = x + n;
}
x2 = 1.0 / (x0 * x0);
xp = 2 * Math.PI;
gl0 = a[9];
for (k = 8; k >= 0; k--) {
gl0 *= x2;
gl0 += a[k];
}
gl = gl0 / x0 + 0.5 * Math.log(xp) + (x0 - 0.5) * Math.log(x0) - x0;
if (x <= 7.0) {
for (k = 1; k <= n; k++) {
gl -= Math.log(x0 - 1.0);
x0 -= 1.0;
}
}
return gl;
}
// gamma of x
jStat.gammafn = function gammafn(x) {
var p = [-1.716185138865495, 24.76565080557592, -379.80425647094563,
629.3311553128184, 866.9662027904133, -31451.272968848367,
-36144.413418691176, 66456.14382024054
];
var q = [-30.8402300119739, 315.35062697960416, -1015.1563674902192,
-3107.771671572311, 22538.118420980151, 4755.8462775278811,
-134659.9598649693, -115132.2596755535];
var fact = false;
var n = 0;
var xden = 0;
var xnum = 0;
var y = x;
var i, z, yi, res;
if (x > 171.6243769536076) {
return Infinity;
}
if (y <= 0) {
res = y % 1 + 3.6e-16;
if (res) {
fact = (!(y & 1) ? 1 : -1) * Math.PI / Math.sin(Math.PI * res);
y = 1 - y;
} else {
return Infinity;
}
}
yi = y;
if (y < 1) {
z = y++;
} else {
z = (y -= n = (y | 0) - 1) - 1;
}
for (i = 0; i < 8; ++i) {
xnum = (xnum + p[i]) * z;
xden = xden * z + q[i];
}
res = xnum / xden + 1;
if (yi < y) {
res /= yi;
} else if (yi > y) {
for (i = 0; i < n; ++i) {
res *= y;
y++;
}
}
if (fact) {
res = fact / res;
}
return res;
};
// lower incomplete gamma function, which is usually typeset with a
// lower-case greek gamma as the function symbol
jStat.gammap = function gammap(a, x) {
return jStat.lowRegGamma(a, x) * jStat.gammafn(a);
};
// The lower regularized incomplete gamma function, usually written P(a,x)
jStat.lowRegGamma = function lowRegGamma(a, x) {
var aln = jStat.gammaln(a);
var ap = a;
var sum = 1 / a;
var del = sum;
var b = x + 1 - a;
var c = 1 / 1.0e-30;
var d = 1 / b;
var h = d;
var i = 1;
// calculate maximum number of itterations required for a
var ITMAX = -~(Math.log((a >= 1) ? a : 1 / a) * 8.5 + a * 0.4 + 17);
var an;
if (x < 0 || a <= 0) {
return NaN;
} else if (x < a + 1) {
for (; i <= ITMAX; i++) {
sum += del *= x / ++ap;
}
return (sum * Math.exp(-x + a * Math.log(x) - (aln)));
}
for (; i <= ITMAX; i++) {
an = -i * (i - a);
b += 2;
d = an * d + b;
c = b + an / c;
d = 1 / d;
h *= d * c;
}
return (1 - h * Math.exp(-x + a * Math.log(x) - (aln)));
};
// natural log factorial of n
jStat.factorialln = function factorialln(n) {
return n < 0 ? NaN : jStat.gammaln(n + 1);
};
// factorial of n
jStat.factorial = function factorial(n) {
return n < 0 ? NaN : jStat.gammafn(n + 1);
};
// combinations of n, m
jStat.combination = function combination(n, m) {
// make sure n or m don't exceed the upper limit of usable values
return (n > 170 || m > 170)
? Math.exp(jStat.combinationln(n, m))
: (jStat.factorial(n) / jStat.factorial(m)) / jStat.factorial(n - m);
};
jStat.combinationln = function combinationln(n, m){
return jStat.factorialln(n) - jStat.factorialln(m) - jStat.factorialln(n - m);
};
// permutations of n, m
jStat.permutation = function permutation(n, m) {
return jStat.factorial(n) / jStat.factorial(n - m);
};
// beta function
jStat.betafn = function betafn(x, y) {
// ensure arguments are positive
if (x <= 0 || y <= 0)
return undefined;
// make sure x + y doesn't exceed the upper limit of usable values
return (x + y > 170)
? Math.exp(jStat.betaln(x, y))
: jStat.gammafn(x) * jStat.gammafn(y) / jStat.gammafn(x + y);
};
// natural logarithm of beta function
jStat.betaln = function betaln(x, y) {
return jStat.gammaln(x) + jStat.gammaln(y) - jStat.gammaln(x + y);
};
// Evaluates the continued fraction for incomplete beta function by modified
// Lentz's method.
jStat.betacf = function betacf(x, a, b) {
var fpmin = 1e-30;
var m = 1;
var qab = a + b;
var qap = a + 1;
var qam = a - 1;
var c = 1;
var d = 1 - qab * x / qap;
var m2, aa, del, h;
// These q's will be used in factors that occur in the coefficients
if (Math.abs(d) < fpmin)
d = fpmin;
d = 1 / d;
h = d;
for (; m <= 100; m++) {
m2 = 2 * m;
aa = m * (b - m) * x / ((qam + m2) * (a + m2));
// One step (the even one) of the recurrence
d = 1 + aa * d;
if (Math.abs(d) < fpmin)
d = fpmin;
c = 1 + aa / c;
if (Math.abs(c) < fpmin)
c = fpmin;
d = 1 / d;
h *= d * c;
aa = -(a + m) * (qab + m) * x / ((a + m2) * (qap + m2));
// Next step of the recurrence (the odd one)
d = 1 + aa * d;
if (Math.abs(d) < fpmin)
d = fpmin;
c = 1 + aa / c;
if (Math.abs(c) < fpmin)
c = fpmin;
d = 1 / d;
del = d * c;
h *= del;
if (Math.abs(del - 1.0) < 3e-7)
break;
}
return h;
};
// Returns the inverse of the lower regularized inomplete gamma function
jStat.gammapinv = function gammapinv(p, a) {
var j = 0;
var a1 = a - 1;
var EPS = 1e-8;
var gln = jStat.gammaln(a);
var x, err, t, u, pp, lna1, afac;
if (p >= 1)
return Math.max(100, a + 100 * Math.sqrt(a));
if (p <= 0)
return 0;
if (a > 1) {
lna1 = Math.log(a1);
afac = Math.exp(a1 * (lna1 - 1) - gln);
pp = (p < 0.5) ? p : 1 - p;
t = Math.sqrt(-2 * Math.log(pp));
x = (2.30753 + t * 0.27061) / (1 + t * (0.99229 + t * 0.04481)) - t;
if (p < 0.5)
x = -x;
x = Math.max(1e-3,
a * Math.pow(1 - 1 / (9 * a) - x / (3 * Math.sqrt(a)), 3));
} else {
t = 1 - a * (0.253 + a * 0.12);
if (p < t)
x = Math.pow(p / t, 1 / a);
else
x = 1 - Math.log(1 - (p - t) / (1 - t));
}
for(; j < 12; j++) {
if (x <= 0)
return 0;
err = jStat.lowRegGamma(a, x) - p;
if (a > 1)
t = afac * Math.exp(-(x - a1) + a1 * (Math.log(x) - lna1));
else
t = Math.exp(-x + a1 * Math.log(x) - gln);
u = err / t;
x -= (t = u / (1 - 0.5 * Math.min(1, u * ((a - 1) / x - 1))));
if (x <= 0)
x = 0.5 * (x + t);
if (Math.abs(t) < EPS * x)
break;
}
return x;
};
// Returns the error function erf(x)
jStat.erf = function erf(x) {
var cof = [-1.3026537197817094, 6.4196979235649026e-1, 1.9476473204185836e-2,
-9.561514786808631e-3, -9.46595344482036e-4, 3.66839497852761e-4,
4.2523324806907e-5, -2.0278578112534e-5, -1.624290004647e-6,
1.303655835580e-6, 1.5626441722e-8, -8.5238095915e-8,
6.529054439e-9, 5.059343495e-9, -9.91364156e-10,
-2.27365122e-10, 9.6467911e-11, 2.394038e-12,
-6.886027e-12, 8.94487e-13, 3.13092e-13,
-1.12708e-13, 3.81e-16, 7.106e-15,
-1.523e-15, -9.4e-17, 1.21e-16,
-2.8e-17];
var j = cof.length - 1;
var isneg = false;
var d = 0;
var dd = 0;
var t, ty, tmp, res;
if (x < 0) {
x = -x;
isneg = true;
}
t = 2 / (2 + x);
ty = 4 * t - 2;
for(; j > 0; j--) {
tmp = d;
d = ty * d - dd + cof[j];
dd = tmp;
}
res = t * Math.exp(-x * x + 0.5 * (cof[0] + ty * d) - dd);
return isneg ? res - 1 : 1 - res;
};
// Returns the complmentary error function erfc(x)
jStat.erfc = function erfc(x) {
return 1 - jStat.erf(x);
};
// Returns the inverse of the complementary error function
jStat.erfcinv = function erfcinv(p) {
var j = 0;
var x, err, t, pp;
if (p >= 2)
return -100;
if (p <= 0)
return 100;
pp = (p < 1) ? p : 2 - p;
t = Math.sqrt(-2 * Math.log(pp / 2));
x = -0.70711 * ((2.30753 + t * 0.27061) /
(1 + t * (0.99229 + t * 0.04481)) - t);
for (; j < 2; j++) {
err = jStat.erfc(x) - pp;
x += err / (1.12837916709551257 * Math.exp(-x * x) - x * err);
}
return (p < 1) ? x : -x;
};
// Returns the inverse of the incomplete beta function
jStat.ibetainv = function ibetainv(p, a, b) {
var EPS = 1e-8;
var a1 = a - 1;
var b1 = b - 1;
var j = 0;
var lna, lnb, pp, t, u, err, x, al, h, w, afac;
if (p <= 0)
return 0;
if (p >= 1)
return 1;
if (a >= 1 && b >= 1) {
pp = (p < 0.5) ? p : 1 - p;
t = Math.sqrt(-2 * Math.log(pp));
x = (2.30753 + t * 0.27061) / (1 + t* (0.99229 + t * 0.04481)) - t;
if (p < 0.5)
x = -x;
al = (x * x - 3) / 6;
h = 2 / (1 / (2 * a - 1) + 1 / (2 * b - 1));
w = (x * Math.sqrt(al + h) / h) - (1 / (2 * b - 1) - 1 / (2 * a - 1)) *
(al + 5 / 6 - 2 / (3 * h));
x = a / (a + b * Math.exp(2 * w));
} else {
lna = Math.log(a / (a + b));
lnb = Math.log(b / (a + b));
t = Math.exp(a * lna) / a;
u = Math.exp(b * lnb) / b;
w = t + u;
if (p < t / w)
x = Math.pow(a * w * p, 1 / a);
else
x = 1 - Math.pow(b * w * (1 - p), 1 / b);
}
afac = -jStat.gammaln(a) - jStat.gammaln(b) + jStat.gammaln(a + b);
for(; j < 10; j++) {
if (x === 0 || x === 1)
return x;
err = jStat.ibeta(x, a, b) - p;
t = Math.exp(a1 * Math.log(x) + b1 * Math.log(1 - x) + afac);
u = err / t;
x -= (t = u / (1 - 0.5 * Math.min(1, u * (a1 / x - b1 / (1 - x)))));
if (x <= 0)
x = 0.5 * (x + t);
if (x >= 1)
x = 0.5 * (x + t + 1);
if (Math.abs(t) < EPS * x && j > 0)
break;
}
return x;
};
// Returns the incomplete beta function I_x(a,b)
jStat.ibeta = function ibeta(x, a, b) {
// Factors in front of the continued fraction.
var bt = (x === 0 || x === 1) ? 0 :
Math.exp(jStat.gammaln(a + b) - jStat.gammaln(a) -
jStat.gammaln(b) + a * Math.log(x) + b *
Math.log(1 - x));
if (x < 0 || x > 1)
return false;
if (x < (a + 1) / (a + b + 2))
// Use continued fraction directly.
return bt * jStat.betacf(x, a, b) / a;
// else use continued fraction after making the symmetry transformation.
return 1 - bt * jStat.betacf(1 - x, b, a) / b;
};
// Returns a normal deviate (mu=0, sigma=1).
// If n and m are specified it returns a object of normal deviates.
jStat.randn = function randn(n, m) {
var u, v, x, y, q;
if (!m)
m = n;
if (n)
return jStat.create(n, m, function() { return jStat.randn(); });
do {
u = jStat._random_fn();
v = 1.7156 * (jStat._random_fn() - 0.5);
x = u - 0.449871;
y = Math.abs(v) + 0.386595;
q = x * x + y * (0.19600 * y - 0.25472 * x);
} while (q > 0.27597 && (q > 0.27846 || v * v > -4 * Math.log(u) * u * u));
return v / u;
};
// Returns a gamma deviate by the method of Marsaglia and Tsang.
jStat.randg = function randg(shape, n, m) {
var oalph = shape;
var a1, a2, u, v, x, mat;
if (!m)
m = n;
if (!shape)
shape = 1;
if (n) {
mat = jStat.zeros(n,m);
mat.alter(function() { return jStat.randg(shape); });
return mat;
}
if (shape < 1)
shape += 1;
a1 = shape - 1 / 3;
a2 = 1 / Math.sqrt(9 * a1);
do {
do {
x = jStat.randn();
v = 1 + a2 * x;
} while(v <= 0);
v = v * v * v;
u = jStat._random_fn();
} while(u > 1 - 0.331 * Math.pow(x, 4) &&
Math.log(u) > 0.5 * x*x + a1 * (1 - v + Math.log(v)));
// alpha > 1
if (shape == oalph)
return a1 * v;
// alpha < 1
do {
u = jStat._random_fn();
} while(u === 0);
return Math.pow(u, 1 / oalph) * a1 * v;
};
// making use of static methods on the instance
(function(funcs) {
for (var i = 0; i < funcs.length; i++) (function(passfunc) {
jStat.fn[passfunc] = function() {
return jStat(
jStat.map(this, function(value) { return jStat[passfunc](value); }));
}
})(funcs[i]);
})('gammaln gammafn factorial factorialln'.split(' '));
(function(funcs) {
for (var i = 0; i < funcs.length; i++) (function(passfunc) {
jStat.fn[passfunc] = function() {
return jStat(jStat[passfunc].apply(null, arguments));
};
})(funcs[i]);
})('randn'.split(' '));
}(jStat, Math));