-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtest_utils.py
48 lines (37 loc) · 1.66 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
from dreamer.utils.module import get_parameters, FreezeParameters
def test_freeze_parameters():
linear_module_1 = nn.Linear(4, 3)
linear_module_2 = nn.Linear(3, 2)
input_tensor = torch.randn(4)
with FreezeParameters([linear_module_2]):
output_tensor = linear_module_2(linear_module_1(input_tensor))
assert output_tensor.grad_fn is not None
input_tensor = torch.randn(3)
with FreezeParameters([linear_module_2]):
output_tensor = linear_module_2(input_tensor)
assert output_tensor.grad_fn is None
input_tensor = torch.randn(4)
with FreezeParameters([linear_module_1, linear_module_2]):
output_tensor = linear_module_2(linear_module_1(input_tensor))
assert output_tensor.grad_fn is None
linear_module_2.weight.requires_grad = False
linear_module_2.bias.requires_grad = True
with FreezeParameters([linear_module_2]):
output_tensor = linear_module_2(linear_module_1(input_tensor))
assert output_tensor.grad_fn is not None
assert not linear_module_2.weight.requires_grad
assert linear_module_2.bias.requires_grad
with FreezeParameters([linear_module_1, linear_module_2]):
output_tensor = linear_module_2(linear_module_1(input_tensor))
assert output_tensor.grad_fn is None
assert not linear_module_2.weight.requires_grad
assert linear_module_2.bias.requires_grad
def test_get_parameters():
linear_module_1 = nn.Linear(4, 3)
linear_module_2 = nn.Linear(3, 2)
params = get_parameters([linear_module_1])
assert len(params) == 2
params = get_parameters([linear_module_1, linear_module_2])
assert len(params) == 4