Time complexity: O(log(n))
+Time complexity: O(log(n)).
Time complexity: O(log(n))
+Time complexity: O(log(n)).
Time complexity: O(log(n))
+Time complexity: O(log(n)).
Time complexity: O(log(n))
+Time complexity: O(log(n)).
Get the value next to given value in this BST. +
Get the next higher value to given value in this BST. Time complexity: O(log(n))
Get the value previous to given value in this BST. +
Get the next lower value to given value in this BST. Time complexity: O(log(n))
Get the value next to given value in this BST. +
Get the next higher value to given value in this BST. Time complexity: O(n)
Get the value previous to given value in this BST. +
Get the next lower value to given value in this BST. Time complexity: O(n)
Remove an existing edge between source and destination. +Time complexity: O(1).
+DiGraph vertex. +
DiGraph vertex for adjacency list Graph implementation. IEnumerable enumerates all the outgoing edge destination vertices.
Graph vertex. +
Graph vertex for adjacency list Graph implementation. IEnumerable enumerates all the outgoing edge destination vertices.
A weighted graph vertex. +
A weighted graph vertex for adjacency list Graph implementation. IEnumerable enumerates all the outgoing edge destination vertices.
A weighted graph vertex. +
A weighted graph vertex for adjacency list Graph implementation. IEnumerable enumerates all the outgoing edge destination vertices.
DiGraph vertex.
+ DiGraph vertex for adjacency list Graph implementation.
IEnumerable enumerates all the outgoing edge destination vertices.
Graph vertex.
+ Graph vertex for adjacency list Graph implementation.
IEnumerable enumerates all the outgoing edge destination vertices.
A weighted graph vertex.
+ A weighted graph vertex for adjacency list Graph implementation.
IEnumerable enumerates all the outgoing edge destination vertices.
A weighted graph vertex.
+ A weighted graph vertex for adjacency list Graph implementation.
IEnumerable enumerates all the outgoing edge destination vertices.
remove an existing edge between source and destination +Time complexity: O(1).
+public class Graph<T>
+ public class Graph<T> : IEnumerable<T>, IEnumerable
public IEnumerator<T> GetEnumerator()
+ Type | +Description | +
---|---|
IEnumerator<T> | ++ |
Do we have an edge between the given source and destination? @@ -336,7 +366,9 @@
Remove an existing edge between source and destination. +Time complexity: O(1).
+IEnumerator IEnumerable.GetEnumerator()
+ Type | +Description | +
---|---|
IEnumerator | ++ |
public class WeightedDiGraph<T, TW>
- where TW : IComparable
+ public class WeightedDiGraph<T, TW> : IEnumerable<T>, IEnumerable where TW : IComparable
public IEnumerator<T> GetEnumerator()
+ Type | +Description | +
---|---|
IEnumerator<T> | ++ |
Do we have an edge between given source and destination? @@ -447,6 +476,40 @@
IEnumerator IEnumerable.GetEnumerator()
+ Type | +Description | +
---|---|
IEnumerator | ++ |
public class WeightedGraph<T, TW>
- where TW : IComparable
+ public class WeightedGraph<T, TW> : IEnumerable<T>, IEnumerable where TW : IComparable
public IEnumerator<T> GetEnumerator()
+ Type | +Description | +
---|---|
IEnumerator<T> | ++ |
Do we have an edge between given source and destination? @@ -406,6 +435,40 @@
IEnumerator IEnumerable.GetEnumerator()
+ Type | +Description | +
---|---|
IEnumerator | ++ |
Get the value next to given value in this BST.
+Get the next higher to given value in this BST.
Get the value previous to given value in this BST.
+Get the next lower value to given value in this BST.
Get the value next to given value in this BST. +
Get the next higher value to given value in this BST. Time complexity: O(n).
Get the value previous to given value in this BST. +
Get the next lower value to given value in this BST. Time complexity: O(n).
A ternary search tree implementation.
+Get the value previous to given value in this BST. +
Get the next higher value to given value in this BST. Time complexity: O(n).
Get the value previous to given value in this BST. +
Get the next lower value to given value in this BST. Time complexity: O(n).
A suffix tree implementation using a trie.
A ternary search tree implementation.
+A treap tree implementation.
Implementesa method tp Check whether a given point is inside given polygon.
+Check whether a given point is inside given polygon.
Compares two points for geometric equality implementing IEqualityComparer.
Implementesa method tp Check whether a given point is inside given polygon.
+Check whether a given point is inside given polygon.
Rotates given point by given angle about given center.
diff --git a/docs/api/Advanced.Algorithms.Graph.Bridge-1.html b/docs/api/Advanced.Algorithms.Graph.Bridge-1.html index 1cc88536..de0cf555 100644 --- a/docs/api/Advanced.Algorithms.Graph.Bridge-1.html +++ b/docs/api/Advanced.Algorithms.Graph.Bridge-1.html @@ -83,7 +83,8 @@The bridge object.
+An Edmond Karp max flow implementation on weighted directed graph using +adjacency list representation of graph and residual graph.
+A floyd-warshall shortest path algorithm implementation.
+A ford-fulkerson max flox implementation on weighted directed graph using +adjacency list representation of graph and residual graph.
+A Johnson's shortest path algorithm implementation.
+A Kruskal's alogorithm implementation +using merge sort and disjoint set.
+An m-coloring algorithm implementation.
+The match result object.
+Minimum cut result object.
+A minimum vertex conver algorithm implementation.
+Bread First Search implementation.
The bridge object.
+Cycle detection using Depth First Search.
An Edmond Karp max flow implementation on weighted directed graph using +adjacency list representation of graph and residual graph.
+A floyd-warshall shortest path algorithm implementation.
+A ford-fulkerson max flox implementation on weighted directed graph using +adjacency list representation of graph and residual graph.
+Compute Max BiParitite Edges using Hopcroft Karp algorithm.
A Johnson's shortest path algorithm implementation.
+Find Toplogical order of a graph using Kahn's algorithm.
A Kruskal's alogorithm implementation +using merge sort and disjoint set.
+The match result object.
+An m-coloring algorithm implementation.
+M-coloring result object.
Minimum cut result object.
+A minimum vertex conver algorithm implementation.
+Minimum spanning tree edge object.
A fast exponentiation algorithm implementation.
+A prime number generation algorithm using Sieve of Eratosthenes.
+Prime generation using Sieve of Eratosthenes.
-A fast exponentiation algorithm implementation.
+A prime number generation algorithm using Sieve of Eratosthenes.
+Tests for Prime in School method optimized.
A binary search algorithm implementation.
+A boyer-moore majority finder algorithm implementation.
+A quick select for Kth smallest algorithm implementation.
+A binary search algorithm implementation.
+A boyer-moore majority finder algorithm implementation.
+A quick select for Kth smallest algorithm implementation.
+A bubble sort implementation.
+A heap sort implementation.
+An insertion sort implementation.
+A merge sort implementation.
+A quick sort implementation.
+A selection sort implementation.
+A tree sort implementation.
+A bubble sort implementation.
+A bucket sort implementation.
A counting sort implementation.
A heap sort implementation.
+An insertion sort implementation.
+A merge sort implementation.
+A quick sort implementation.
+A radix sort implementation.
A selection sort implementation.
+A shell sort implementation.
A tree sort implementation.
+Knuth–Morris–Pratt(KMP) search implementation.
+Knuth–Morris–Pratt(KMP) string search implementation.
A Rabin-Karp string search implementation.
+A Z-algorithm implementation for string search.
+Knuth–Morris–Pratt(KMP) search implementation.
+Knuth–Morris–Pratt(KMP) string search implementation.
A Manacher's longest palindrome implementation.
A Rabin-Karp string search implementation.
+A Z-algorithm implementation for string search.
+