-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathconfig.ts
424 lines (388 loc) Β· 12.4 KB
/
config.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import { BaseLanguageModel } from "@langchain/core/language_models/base";
import { RunnableConfig } from "@langchain/core/runnables";
import { Example, Run } from "langsmith";
import { EvaluationResult, RunEvaluator } from "langsmith/evaluation";
import {
Criteria as CriteriaType,
type EmbeddingDistanceEvalChainInput,
} from "../evaluation/index.js";
import { LoadEvaluatorOptions } from "../evaluation/loader.js";
import { EvaluatorType } from "../evaluation/types.js";
export type EvaluatorInputs = {
input?: string | unknown;
prediction: string | unknown;
reference?: string | unknown;
};
export type EvaluatorInputFormatter = ({
rawInput,
rawPrediction,
rawReferenceOutput,
run,
}: {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
rawInput: any;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
rawPrediction: any;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
rawReferenceOutput?: any;
run: Run;
}) => EvaluatorInputs;
export type DynamicRunEvaluatorParams<
// eslint-disable-next-line @typescript-eslint/no-explicit-any
Input extends Record<string, any> = Record<string, unknown>,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
Prediction extends Record<string, any> = Record<string, unknown>,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
Reference extends Record<string, any> = Record<string, unknown>
> = {
input: Input;
prediction?: Prediction;
reference?: Reference;
run: Run;
example?: Example;
};
/**
* Type of a function that can be coerced into a RunEvaluator function.
* While we have the class-based RunEvaluator, it's often more convenient to directly
* pass a function to the runner. This type allows us to do that.
*/
export type RunEvaluatorLike =
| ((
props: DynamicRunEvaluatorParams,
options: RunnableConfig
) => Promise<EvaluationResult>)
| ((
props: DynamicRunEvaluatorParams,
options: RunnableConfig
) => EvaluationResult);
export function isOffTheShelfEvaluator<
T extends keyof EvaluatorType,
U extends RunEvaluator | RunEvaluatorLike = RunEvaluator | RunEvaluatorLike
>(evaluator: T | EvalConfig | U): evaluator is T | EvalConfig {
return typeof evaluator === "string" || "evaluatorType" in evaluator;
}
export function isCustomEvaluator<
T extends keyof EvaluatorType,
U extends RunEvaluator | RunEvaluatorLike = RunEvaluator | RunEvaluatorLike
>(evaluator: T | EvalConfig | U): evaluator is U {
return !isOffTheShelfEvaluator(evaluator);
}
export type RunEvalType<
T extends keyof EvaluatorType =
| "criteria"
| "labeled_criteria"
| "embedding_distance",
U extends RunEvaluator | RunEvaluatorLike = RunEvaluator | RunEvaluatorLike
> = T | EvalConfig | U;
/**
* Configuration class for running evaluations on datasets.
*
* @remarks
* RunEvalConfig in LangSmith is a configuration class for running evaluations on datasets. Its primary purpose is to define the parameters and evaluators that will be applied during the evaluation of a dataset. This configuration can include various evaluators, custom evaluators, and different keys for inputs, predictions, and references.
*
* @typeparam T - The type of evaluators.
* @typeparam U - The type of custom evaluators.
*/
export type RunEvalConfig<
T extends keyof EvaluatorType =
| "criteria"
| "labeled_criteria"
| "embedding_distance",
U extends RunEvaluator | RunEvaluatorLike = RunEvaluator | RunEvaluatorLike
> = {
/**
* Evaluators to apply to a dataset run.
* You can optionally specify these by name, or by
* configuring them with an EvalConfig object.
*/
evaluators?: RunEvalType<T, U>[];
/**
* Convert the evaluation data into formats that can be used by the evaluator.
* This should most commonly be a string.
* Parameters are the raw input from the run, the raw output, raw reference output, and the raw run.
* @example
* ```ts
* // Chain input: { input: "some string" }
* // Chain output: { output: "some output" }
* // Reference example output format: { output: "some reference output" }
* const formatEvaluatorInputs = ({
* rawInput,
* rawPrediction,
* rawReferenceOutput,
* }) => {
* return {
* input: rawInput.input,
* prediction: rawPrediction.output,
* reference: rawReferenceOutput.output,
* };
* };
* ```
* @returns The prepared data.
*/
formatEvaluatorInputs?: EvaluatorInputFormatter;
/**
* Custom evaluators to apply to a dataset run.
* Each evaluator is provided with a run trace containing the model
* outputs, as well as an "example" object representing a record
* in the dataset.
*
* @deprecated Use `evaluators` instead.
*/
customEvaluators?: U[];
};
export interface EvalConfig extends LoadEvaluatorOptions {
/**
* The name of the evaluator to use.
* Example: labeled_criteria, criteria, etc.
*/
evaluatorType: keyof EvaluatorType;
/**
* The feedback (or metric) name to use for the logged
* evaluation results. If none provided, we default to
* the evaluationName.
*/
feedbackKey?: string;
/**
* Convert the evaluation data into formats that can be used by the evaluator.
* This should most commonly be a string.
* Parameters are the raw input from the run, the raw output, raw reference output, and the raw run.
* @example
* ```ts
* // Chain input: { input: "some string" }
* // Chain output: { output: "some output" }
* // Reference example output format: { output: "some reference output" }
* const formatEvaluatorInputs = ({
* rawInput,
* rawPrediction,
* rawReferenceOutput,
* }) => {
* return {
* input: rawInput.input,
* prediction: rawPrediction.output,
* reference: rawReferenceOutput.output,
* };
* };
* ```
* @returns The prepared data.
*/
formatEvaluatorInputs: EvaluatorInputFormatter;
}
const isStringifiableValue = (
value: unknown
): value is string | number | boolean | bigint =>
typeof value === "string" ||
typeof value === "number" ||
typeof value === "boolean" ||
typeof value === "bigint";
const getSingleStringifiedValue = (value: unknown) => {
if (isStringifiableValue(value)) {
return `${value}`;
}
if (typeof value === "object" && value != null && !Array.isArray(value)) {
const entries = Object.entries(value);
if (entries.length === 1 && isStringifiableValue(entries[0][1])) {
return `${entries[0][1]}`;
}
}
console.warn("Non-stringifiable value found when coercing", value);
return `${value}`;
};
/**
* Configuration to load a "CriteriaEvalChain" evaluator,
* which prompts an LLM to determine whether the model's
* prediction complies with the provided criteria.
* @param criteria - The criteria to use for the evaluator.
* @param llm - The language model to use for the evaluator.
* @returns The configuration for the evaluator.
* @example
* ```ts
* const evalConfig = {
* evaluators: [Criteria("helpfulness")],
* };
* @example
* ```ts
* const evalConfig = {
* evaluators: [
* Criteria({
* "isCompliant": "Does the submission comply with the requirements of XYZ"
* })
* ],
* };
* @example
* ```ts
* const evalConfig = {
* evaluators: [{
* evaluatorType: "criteria",
* criteria: "helpfulness"
* formatEvaluatorInputs: ...
* }]
* };
* ```
* @example
* ```ts
* const evalConfig = {
* evaluators: [{
* evaluatorType: "criteria",
* criteria: { "isCompliant": "Does the submission comply with the requirements of XYZ" },
* formatEvaluatorInputs: ...
* }]
* };
*/
export type Criteria = EvalConfig & {
evaluatorType: "criteria";
/**
* The "criteria" to insert into the prompt template
* used for evaluation. See the prompt at
* https://smith.langchain.com/hub/langchain-ai/criteria-evaluator
* for more information.
*/
criteria?: CriteriaType | Record<string, string>;
/**
* The language model to use as the evaluator, defaults to GPT-4
*/
llm?: BaseLanguageModel;
};
// for compatibility reasons
export type CriteriaEvalChainConfig = Criteria;
export function Criteria(
criteria: CriteriaType | Record<string, string>,
config?: Pick<
Partial<LabeledCriteria>,
"formatEvaluatorInputs" | "llm" | "feedbackKey"
>
): EvalConfig {
const formatEvaluatorInputs =
config?.formatEvaluatorInputs ??
((payload) => ({
prediction: getSingleStringifiedValue(payload.rawPrediction),
input: getSingleStringifiedValue(payload.rawInput),
}));
if (typeof criteria !== "string" && Object.keys(criteria).length !== 1) {
throw new Error(
"Only one criteria key is allowed when specifying custom criteria."
);
}
const criteriaKey =
typeof criteria === "string" ? criteria : Object.keys(criteria)[0];
return {
evaluatorType: "criteria",
criteria,
feedbackKey: config?.feedbackKey ?? criteriaKey,
llm: config?.llm,
formatEvaluatorInputs,
};
}
/**
* Configuration to load a "LabeledCriteriaEvalChain" evaluator,
* which prompts an LLM to determine whether the model's
* prediction complies with the provided criteria and also
* provides a "ground truth" label for the evaluator to incorporate
* in its evaluation.
* @param criteria - The criteria to use for the evaluator.
* @param llm - The language model to use for the evaluator.
* @returns The configuration for the evaluator.
* @example
* ```ts
* const evalConfig = {
* evaluators: [LabeledCriteria("correctness")],
* };
* @example
* ```ts
* const evalConfig = {
* evaluators: [
* LabeledCriteria({
* "mentionsAllFacts": "Does the include all facts provided in the reference?"
* })
* ],
* };
* @example
* ```ts
* const evalConfig = {
* evaluators: [{
* evaluatorType: "labeled_criteria",
* criteria: "correctness",
* formatEvaluatorInputs: ...
* }],
* };
* ```
* @example
* ```ts
* const evalConfig = {
* evaluators: [{
* evaluatorType: "labeled_criteria",
* criteria: { "mentionsAllFacts": "Does the include all facts provided in the reference?" },
* formatEvaluatorInputs: ...
* }],
* };
*/
export type LabeledCriteria = EvalConfig & {
evaluatorType: "labeled_criteria";
/**
* The "criteria" to insert into the prompt template
* used for evaluation. See the prompt at
* https://smith.langchain.com/hub/langchain-ai/labeled-criteria
* for more information.
*/
criteria?: CriteriaType | Record<string, string>;
/**
* The language model to use as the evaluator, defaults to GPT-4
*/
llm?: BaseLanguageModel;
};
export function LabeledCriteria(
criteria: CriteriaType | Record<string, string>,
config?: Pick<
Partial<LabeledCriteria>,
"formatEvaluatorInputs" | "llm" | "feedbackKey"
>
): LabeledCriteria {
const formatEvaluatorInputs =
config?.formatEvaluatorInputs ??
((payload) => ({
prediction: getSingleStringifiedValue(payload.rawPrediction),
input: getSingleStringifiedValue(payload.rawInput),
reference: getSingleStringifiedValue(payload.rawReferenceOutput),
}));
if (typeof criteria !== "string" && Object.keys(criteria).length !== 1) {
throw new Error(
"Only one labeled criteria key is allowed when specifying custom criteria."
);
}
const criteriaKey =
typeof criteria === "string" ? criteria : Object.keys(criteria)[0];
return {
evaluatorType: "labeled_criteria",
criteria,
feedbackKey: config?.feedbackKey ?? criteriaKey,
llm: config?.llm,
formatEvaluatorInputs,
};
}
/**
* Configuration to load a "EmbeddingDistanceEvalChain" evaluator,
* which embeds distances to score semantic difference between
* a prediction and reference.
*/
export type EmbeddingDistance = EvalConfig &
EmbeddingDistanceEvalChainInput & { evaluatorType: "embedding_distance" };
export function EmbeddingDistance(
distanceMetric: EmbeddingDistanceEvalChainInput["distanceMetric"],
config?: Pick<
Partial<LabeledCriteria>,
"formatEvaluatorInputs" | "embedding" | "feedbackKey"
>
): EmbeddingDistance {
const formatEvaluatorInputs =
config?.formatEvaluatorInputs ??
((payload) => ({
prediction: getSingleStringifiedValue(payload.rawPrediction),
reference: getSingleStringifiedValue(payload.rawReferenceOutput),
}));
return {
evaluatorType: "embedding_distance",
embedding: config?.embedding,
distanceMetric,
feedbackKey: config?.feedbackKey ?? "embedding_distance",
formatEvaluatorInputs,
};
}