-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathllms.ts
492 lines (432 loc) Β· 13.6 KB
/
llms.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import type { TiktokenModel } from "js-tiktoken/lite";
import { type ClientOptions, OpenAI as OpenAIClient } from "openai";
import { calculateMaxTokens } from "@langchain/core/language_models/base";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import { GenerationChunk, type LLMResult } from "@langchain/core/outputs";
import { getEnvironmentVariable } from "@langchain/core/utils/env";
import {
BaseLLM,
type BaseLLMParams,
} from "@langchain/core/language_models/llms";
import { chunkArray } from "@langchain/core/utils/chunk_array";
import type {
OpenAICallOptions,
OpenAICoreRequestOptions,
OpenAIInput,
} from "./types.js";
import { OpenAIEndpointConfig, getEndpoint } from "./utils/azure.js";
import { wrapOpenAIClientError } from "./utils/openai.js";
export type { OpenAICallOptions, OpenAIInput };
/**
* Interface for tracking token usage in OpenAI calls.
*/
interface TokenUsage {
completionTokens?: number;
promptTokens?: number;
totalTokens?: number;
}
/**
* Wrapper around OpenAI large language models.
*
* To use you should have the `openai` package installed, with the
* `OPENAI_API_KEY` environment variable set.
*
* To use with Azure, import the `AzureOpenAI` class.
*
* @remarks
* Any parameters that are valid to be passed to {@link
* https://platform.openai.com/docs/api-reference/completions/create |
* `openai.createCompletion`} can be passed through {@link modelKwargs}, even
* if not explicitly available on this class.
* @example
* ```typescript
* const model = new OpenAI({
* modelName: "gpt-4",
* temperature: 0.7,
* maxTokens: 1000,
* maxRetries: 5,
* });
*
* const res = await model.invoke(
* "Question: What would be a good company name for a company that makes colorful socks?\nAnswer:"
* );
* console.log({ res });
* ```
*/
export class OpenAI<CallOptions extends OpenAICallOptions = OpenAICallOptions>
extends BaseLLM<CallOptions>
implements Partial<OpenAIInput>
{
static lc_name() {
return "OpenAI";
}
get callKeys() {
return [...super.callKeys, "options"];
}
lc_serializable = true;
get lc_secrets(): { [key: string]: string } | undefined {
return {
openAIApiKey: "OPENAI_API_KEY",
apiKey: "OPENAI_API_KEY",
organization: "OPENAI_ORGANIZATION",
};
}
get lc_aliases(): Record<string, string> {
return {
modelName: "model",
openAIApiKey: "openai_api_key",
apiKey: "openai_api_key",
};
}
temperature?: number;
maxTokens?: number;
topP?: number;
frequencyPenalty?: number;
presencePenalty?: number;
n = 1;
bestOf?: number;
logitBias?: Record<string, number>;
model = "gpt-3.5-turbo-instruct";
/** @deprecated Use "model" instead */
modelName: string;
modelKwargs?: OpenAIInput["modelKwargs"];
batchSize = 20;
timeout?: number;
stop?: string[];
stopSequences?: string[];
user?: string;
streaming = false;
openAIApiKey?: string;
apiKey?: string;
organization?: string;
protected client: OpenAIClient;
protected clientConfig: ClientOptions;
constructor(
fields?: Partial<OpenAIInput> &
BaseLLMParams & {
configuration?: ClientOptions;
}
) {
super(fields ?? {});
this.openAIApiKey =
fields?.apiKey ??
fields?.openAIApiKey ??
getEnvironmentVariable("OPENAI_API_KEY");
this.apiKey = this.openAIApiKey;
this.organization =
fields?.configuration?.organization ??
getEnvironmentVariable("OPENAI_ORGANIZATION");
this.model = fields?.model ?? fields?.modelName ?? this.model;
if (
(this.model?.startsWith("gpt-3.5-turbo") ||
this.model?.startsWith("gpt-4") ||
this.model?.startsWith("o1")) &&
!this.model?.includes("-instruct")
) {
throw new Error(
[
`Your chosen OpenAI model, "${this.model}", is a chat model and not a text-in/text-out LLM.`,
`Passing it into the "OpenAI" class is no longer supported.`,
`Please use the "ChatOpenAI" class instead.`,
"",
`See this page for more information:`,
"|",
`β> https://js.langchain.com/docs/integrations/chat/openai`,
].join("\n")
);
}
this.modelName = this.model;
this.modelKwargs = fields?.modelKwargs ?? {};
this.batchSize = fields?.batchSize ?? this.batchSize;
this.timeout = fields?.timeout;
this.temperature = fields?.temperature ?? this.temperature;
this.maxTokens = fields?.maxTokens ?? this.maxTokens;
this.topP = fields?.topP ?? this.topP;
this.frequencyPenalty = fields?.frequencyPenalty ?? this.frequencyPenalty;
this.presencePenalty = fields?.presencePenalty ?? this.presencePenalty;
this.n = fields?.n ?? this.n;
this.bestOf = fields?.bestOf ?? this.bestOf;
this.logitBias = fields?.logitBias;
this.stop = fields?.stopSequences ?? fields?.stop;
this.stopSequences = this.stop;
this.user = fields?.user;
this.streaming = fields?.streaming ?? false;
if (this.streaming && this.bestOf && this.bestOf > 1) {
throw new Error("Cannot stream results when bestOf > 1");
}
this.clientConfig = {
apiKey: this.apiKey,
organization: this.organization,
dangerouslyAllowBrowser: true,
...fields?.configuration,
};
}
/**
* Get the parameters used to invoke the model
*/
invocationParams(
options?: this["ParsedCallOptions"]
): Omit<OpenAIClient.CompletionCreateParams, "prompt"> {
return {
model: this.model,
temperature: this.temperature,
max_tokens: this.maxTokens,
top_p: this.topP,
frequency_penalty: this.frequencyPenalty,
presence_penalty: this.presencePenalty,
n: this.n,
best_of: this.bestOf,
logit_bias: this.logitBias,
stop: options?.stop ?? this.stopSequences,
user: this.user,
stream: this.streaming,
...this.modelKwargs,
};
}
/** @ignore */
_identifyingParams(): Omit<OpenAIClient.CompletionCreateParams, "prompt"> & {
model_name: string;
} & ClientOptions {
return {
model_name: this.model,
...this.invocationParams(),
...this.clientConfig,
};
}
/**
* Get the identifying parameters for the model
*/
identifyingParams(): Omit<OpenAIClient.CompletionCreateParams, "prompt"> & {
model_name: string;
} & ClientOptions {
return this._identifyingParams();
}
/**
* Call out to OpenAI's endpoint with k unique prompts
*
* @param [prompts] - The prompts to pass into the model.
* @param [options] - Optional list of stop words to use when generating.
* @param [runManager] - Optional callback manager to use when generating.
*
* @returns The full LLM output.
*
* @example
* ```ts
* import { OpenAI } from "langchain/llms/openai";
* const openai = new OpenAI();
* const response = await openai.generate(["Tell me a joke."]);
* ```
*/
async _generate(
prompts: string[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): Promise<LLMResult> {
const subPrompts = chunkArray(prompts, this.batchSize);
const choices: OpenAIClient.CompletionChoice[] = [];
const tokenUsage: TokenUsage = {};
const params = this.invocationParams(options);
if (params.max_tokens === -1) {
if (prompts.length !== 1) {
throw new Error(
"max_tokens set to -1 not supported for multiple inputs"
);
}
params.max_tokens = await calculateMaxTokens({
prompt: prompts[0],
// Cast here to allow for other models that may not fit the union
modelName: this.model as TiktokenModel,
});
}
for (let i = 0; i < subPrompts.length; i += 1) {
const data = params.stream
? await (async () => {
const choices: OpenAIClient.CompletionChoice[] = [];
let response: Omit<OpenAIClient.Completion, "choices"> | undefined;
const stream = await this.completionWithRetry(
{
...params,
stream: true,
prompt: subPrompts[i],
},
options
);
for await (const message of stream) {
// on the first message set the response properties
if (!response) {
response = {
id: message.id,
object: message.object,
created: message.created,
model: message.model,
};
}
// on all messages, update choice
for (const part of message.choices) {
if (!choices[part.index]) {
choices[part.index] = part;
} else {
const choice = choices[part.index];
choice.text += part.text;
choice.finish_reason = part.finish_reason;
choice.logprobs = part.logprobs;
}
void runManager?.handleLLMNewToken(part.text, {
prompt: Math.floor(part.index / this.n),
completion: part.index % this.n,
});
}
}
if (options.signal?.aborted) {
throw new Error("AbortError");
}
return { ...response, choices };
})()
: await this.completionWithRetry(
{
...params,
stream: false,
prompt: subPrompts[i],
},
{
signal: options.signal,
...options.options,
}
);
choices.push(...data.choices);
const {
completion_tokens: completionTokens,
prompt_tokens: promptTokens,
total_tokens: totalTokens,
} = data.usage
? data.usage
: {
completion_tokens: undefined,
prompt_tokens: undefined,
total_tokens: undefined,
};
if (completionTokens) {
tokenUsage.completionTokens =
(tokenUsage.completionTokens ?? 0) + completionTokens;
}
if (promptTokens) {
tokenUsage.promptTokens = (tokenUsage.promptTokens ?? 0) + promptTokens;
}
if (totalTokens) {
tokenUsage.totalTokens = (tokenUsage.totalTokens ?? 0) + totalTokens;
}
}
const generations = chunkArray(choices, this.n).map((promptChoices) =>
promptChoices.map((choice) => ({
text: choice.text ?? "",
generationInfo: {
finishReason: choice.finish_reason,
logprobs: choice.logprobs,
},
}))
);
return {
generations,
llmOutput: { tokenUsage },
};
}
// TODO(jacoblee): Refactor with _generate(..., {stream: true}) implementation?
async *_streamResponseChunks(
input: string,
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<GenerationChunk> {
const params = {
...this.invocationParams(options),
prompt: input,
stream: true as const,
};
const stream = await this.completionWithRetry(params, options);
for await (const data of stream) {
const choice = data?.choices[0];
if (!choice) {
continue;
}
const chunk = new GenerationChunk({
text: choice.text,
generationInfo: {
finishReason: choice.finish_reason,
},
});
yield chunk;
// eslint-disable-next-line no-void
void runManager?.handleLLMNewToken(chunk.text ?? "");
}
if (options.signal?.aborted) {
throw new Error("AbortError");
}
}
/**
* Calls the OpenAI API with retry logic in case of failures.
* @param request The request to send to the OpenAI API.
* @param options Optional configuration for the API call.
* @returns The response from the OpenAI API.
*/
async completionWithRetry(
request: OpenAIClient.CompletionCreateParamsStreaming,
options?: OpenAICoreRequestOptions
): Promise<AsyncIterable<OpenAIClient.Completion>>;
async completionWithRetry(
request: OpenAIClient.CompletionCreateParamsNonStreaming,
options?: OpenAICoreRequestOptions
): Promise<OpenAIClient.Completions.Completion>;
async completionWithRetry(
request:
| OpenAIClient.CompletionCreateParamsStreaming
| OpenAIClient.CompletionCreateParamsNonStreaming,
options?: OpenAICoreRequestOptions
): Promise<
AsyncIterable<OpenAIClient.Completion> | OpenAIClient.Completions.Completion
> {
const requestOptions = this._getClientOptions(options);
return this.caller.call(async () => {
try {
const res = await this.client.completions.create(
request,
requestOptions
);
return res;
} catch (e) {
const error = wrapOpenAIClientError(e);
throw error;
}
});
}
/**
* Calls the OpenAI API with retry logic in case of failures.
* @param request The request to send to the OpenAI API.
* @param options Optional configuration for the API call.
* @returns The response from the OpenAI API.
*/
protected _getClientOptions(options: OpenAICoreRequestOptions | undefined) {
if (!this.client) {
const openAIEndpointConfig: OpenAIEndpointConfig = {
baseURL: this.clientConfig.baseURL,
};
const endpoint = getEndpoint(openAIEndpointConfig);
const params = {
...this.clientConfig,
baseURL: endpoint,
timeout: this.timeout,
maxRetries: 0,
};
if (!params.baseURL) {
delete params.baseURL;
}
this.client = new OpenAIClient(params);
}
const requestOptions = {
...this.clientConfig,
...options,
} as OpenAICoreRequestOptions;
return requestOptions;
}
_llmType() {
return "openai";
}
}