|
1 | 1 | #ifndef __DENOISER_HPP__
|
2 | 2 | #define __DENOISER_HPP__
|
3 | 3 |
|
| 4 | +#include "ggml.h" |
4 | 5 | #include "ggml_extend.hpp"
|
5 | 6 |
|
6 | 7 | /*================================================= CompVisDenoiser ==================================================*/
|
@@ -705,6 +706,156 @@ static void sample_k_diffusion(sample_method_t method,
|
705 | 706 | }
|
706 | 707 | }
|
707 | 708 | } break;
|
| 709 | + case IPNDM: { |
| 710 | + int max_order = 4; |
| 711 | + ggml_tensor* x_next = x; |
| 712 | + std::vector<ggml_tensor*> buffer_model; |
| 713 | + |
| 714 | + for (int i = 0; i < steps; i++) { |
| 715 | + float sigma = sigmas[i]; |
| 716 | + float sigma_next = sigmas[i + 1]; |
| 717 | + |
| 718 | + ggml_tensor* x_cur = x_next; |
| 719 | + float* vec_x_cur = (float*)x_cur->data; |
| 720 | + float* vec_x_next = (float*)x_next->data; |
| 721 | + |
| 722 | + // Denoising step |
| 723 | + ggml_tensor* denoised = model(x_cur, sigma, i + 1); |
| 724 | + float* vec_denoised = (float*)denoised->data; |
| 725 | + // d_cur = (x_cur - denoised) / sigma |
| 726 | + struct ggml_tensor* d_cur = ggml_dup_tensor(work_ctx, x_cur); |
| 727 | + float* vec_d_cur = (float*)d_cur->data; |
| 728 | + |
| 729 | + for (int j = 0; j < ggml_nelements(d_cur); j++) { |
| 730 | + vec_d_cur[j] = (vec_x_cur[j] - vec_denoised[j]) / sigma; |
| 731 | + } |
| 732 | + |
| 733 | + int order = std::min(max_order, i + 1); |
| 734 | + |
| 735 | + // Calculate vec_x_next based on the order |
| 736 | + switch (order) { |
| 737 | + case 1: // First Euler step |
| 738 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 739 | + vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * vec_d_cur[j]; |
| 740 | + } |
| 741 | + break; |
| 742 | + |
| 743 | + case 2: // Use one history point |
| 744 | + { |
| 745 | + float* vec_d_prev1 = (float*)buffer_model.back()->data; |
| 746 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 747 | + vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * (3 * vec_d_cur[j] - vec_d_prev1[j]) / 2; |
| 748 | + } |
| 749 | + } |
| 750 | + break; |
| 751 | + |
| 752 | + case 3: // Use two history points |
| 753 | + { |
| 754 | + float* vec_d_prev1 = (float*)buffer_model.back()->data; |
| 755 | + float* vec_d_prev2 = (float*)buffer_model[buffer_model.size() - 2]->data; |
| 756 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 757 | + vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * (23 * vec_d_cur[j] - 16 * vec_d_prev1[j] + 5 * vec_d_prev2[j]) / 12; |
| 758 | + } |
| 759 | + } |
| 760 | + break; |
| 761 | + |
| 762 | + case 4: // Use three history points |
| 763 | + { |
| 764 | + float* vec_d_prev1 = (float*)buffer_model.back()->data; |
| 765 | + float* vec_d_prev2 = (float*)buffer_model[buffer_model.size() - 2]->data; |
| 766 | + float* vec_d_prev3 = (float*)buffer_model[buffer_model.size() - 3]->data; |
| 767 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 768 | + vec_x_next[j] = vec_x_cur[j] + (sigma_next - sigma) * (55 * vec_d_cur[j] - 59 * vec_d_prev1[j] + 37 * vec_d_prev2[j] - 9 * vec_d_prev3[j]) / 24; |
| 769 | + } |
| 770 | + } |
| 771 | + break; |
| 772 | + } |
| 773 | + |
| 774 | + // Manage buffer_model |
| 775 | + if (buffer_model.size() == max_order - 1) { |
| 776 | + // Shift elements to the left |
| 777 | + for (int k = 0; k < max_order - 2; k++) { |
| 778 | + buffer_model[k] = buffer_model[k + 1]; |
| 779 | + } |
| 780 | + buffer_model.back() = d_cur; // Replace the last element with d_cur |
| 781 | + } else { |
| 782 | + buffer_model.push_back(d_cur); |
| 783 | + } |
| 784 | + } |
| 785 | + } break; |
| 786 | + case IPNDM_V: { |
| 787 | + int max_order = 4; |
| 788 | + std::vector<ggml_tensor*> buffer_model; |
| 789 | + ggml_tensor* x_next = x; |
| 790 | + |
| 791 | + for (int i = 0; i < steps; i++) { |
| 792 | + float sigma = sigmas[i]; |
| 793 | + float t_next = sigmas[i + 1]; |
| 794 | + |
| 795 | + // Denoising step |
| 796 | + ggml_tensor* denoised = model(x, sigma, i + 1); |
| 797 | + float* vec_denoised = (float*)denoised->data; |
| 798 | + struct ggml_tensor* d_cur = ggml_dup_tensor(work_ctx, x); |
| 799 | + float* vec_d_cur = (float*)d_cur->data; |
| 800 | + float* vec_x = (float*)x->data; |
| 801 | + |
| 802 | + // d_cur = (x - denoised) / sigma |
| 803 | + for (int j = 0; j < ggml_nelements(d_cur); j++) { |
| 804 | + vec_d_cur[j] = (vec_x[j] - vec_denoised[j]) / sigma; |
| 805 | + } |
| 806 | + |
| 807 | + int order = std::min(max_order, i + 1); |
| 808 | + float h_n = t_next - sigma; |
| 809 | + float h_n_1 = (i > 0) ? (sigma - sigmas[i - 1]) : h_n; |
| 810 | + |
| 811 | + switch (order) { |
| 812 | + case 1: |
| 813 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 814 | + vec_x[j] += vec_d_cur[j] * h_n; |
| 815 | + } |
| 816 | + break; |
| 817 | + |
| 818 | + case 2: { |
| 819 | + float* vec_d_prev1 = (float*)buffer_model.back()->data; |
| 820 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 821 | + vec_x[j] += h_n * ((2 + (h_n / h_n_1)) * vec_d_cur[j] - (h_n / h_n_1) * vec_d_prev1[j]) / 2; |
| 822 | + } |
| 823 | + break; |
| 824 | + } |
| 825 | + |
| 826 | + case 3: { |
| 827 | + float h_n_2 = (i > 1) ? (sigmas[i - 1] - sigmas[i - 2]) : h_n_1; |
| 828 | + float* vec_d_prev1 = (float*)buffer_model.back()->data; |
| 829 | + float* vec_d_prev2 = (buffer_model.size() > 1) ? (float*)buffer_model[buffer_model.size() - 2]->data : vec_d_prev1; |
| 830 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 831 | + vec_x[j] += h_n * ((23 * vec_d_cur[j] - 16 * vec_d_prev1[j] + 5 * vec_d_prev2[j]) / 12); |
| 832 | + } |
| 833 | + break; |
| 834 | + } |
| 835 | + |
| 836 | + case 4: { |
| 837 | + float h_n_2 = (i > 1) ? (sigmas[i - 1] - sigmas[i - 2]) : h_n_1; |
| 838 | + float h_n_3 = (i > 2) ? (sigmas[i - 2] - sigmas[i - 3]) : h_n_2; |
| 839 | + float* vec_d_prev1 = (float*)buffer_model.back()->data; |
| 840 | + float* vec_d_prev2 = (buffer_model.size() > 1) ? (float*)buffer_model[buffer_model.size() - 2]->data : vec_d_prev1; |
| 841 | + float* vec_d_prev3 = (buffer_model.size() > 2) ? (float*)buffer_model[buffer_model.size() - 3]->data : vec_d_prev2; |
| 842 | + for (int j = 0; j < ggml_nelements(x_next); j++) { |
| 843 | + vec_x[j] += h_n * ((55 * vec_d_cur[j] - 59 * vec_d_prev1[j] + 37 * vec_d_prev2[j] - 9 * vec_d_prev3[j]) / 24); |
| 844 | + } |
| 845 | + break; |
| 846 | + } |
| 847 | + } |
| 848 | + |
| 849 | + // Manage buffer_model |
| 850 | + if (buffer_model.size() == max_order - 1) { |
| 851 | + buffer_model.erase(buffer_model.begin()); |
| 852 | + } |
| 853 | + buffer_model.push_back(d_cur); |
| 854 | + |
| 855 | + // Prepare the next d tensor |
| 856 | + d_cur = ggml_dup_tensor(work_ctx, x_next); |
| 857 | + } |
| 858 | + } break; |
708 | 859 | case LCM: // Latent Consistency Models
|
709 | 860 | {
|
710 | 861 | struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
|
|
0 commit comments