|
19 | 19 | },
|
20 | 20 | {
|
21 | 21 | "cell_type": "code",
|
22 |
| - "execution_count": 3, |
| 22 | + "execution_count": 1, |
23 | 23 | "metadata": {
|
24 | 24 | "collapsed": false
|
25 | 25 | },
|
|
44 | 44 | },
|
45 | 45 | {
|
46 | 46 | "cell_type": "code",
|
47 |
| - "execution_count": 4, |
| 47 | + "execution_count": 3, |
48 | 48 | "metadata": {
|
49 | 49 | "collapsed": false
|
50 | 50 | },
|
|
64 | 64 | },
|
65 | 65 | {
|
66 | 66 | "cell_type": "code",
|
67 |
| - "execution_count": 168, |
| 67 | + "execution_count": 4, |
68 | 68 | "metadata": {
|
69 | 69 | "collapsed": false
|
70 | 70 | },
|
|
75 | 75 | "1130"
|
76 | 76 | ]
|
77 | 77 | },
|
78 |
| - "execution_count": 168, |
| 78 | + "execution_count": 4, |
79 | 79 | "metadata": {},
|
80 | 80 | "output_type": "execute_result"
|
81 | 81 | }
|
|
104 | 104 | },
|
105 | 105 | {
|
106 | 106 | "cell_type": "code",
|
107 |
| - "execution_count": 176, |
| 107 | + "execution_count": 9, |
108 | 108 | "metadata": {
|
109 | 109 | "collapsed": false
|
110 | 110 | },
|
|
430 | 430 | "34 Bottled Water 1.09"
|
431 | 431 | ]
|
432 | 432 | },
|
433 |
| - "execution_count": 176, |
| 433 | + "execution_count": 9, |
434 | 434 | "metadata": {},
|
435 | 435 | "output_type": "execute_result"
|
436 | 436 | }
|
|
439 | 439 | "# delete the duplicates in item_name and quantity\n",
|
440 | 440 | "chipo_filtered = chipo.drop_duplicates(['item_name','quantity'])\n",
|
441 | 441 | "\n",
|
442 |
| - "# select only the ones with quantity equals to 1\n", |
443 |
| - "price_per_item = chipo_filtered[chipo_filtered.quantity == 1]\n", |
| 442 | + "# select only the products with quantity equals to 1\n", |
| 443 | + "chipo_one_prod = chipo_filtered[chipo_filtered.quantity == 1]\n", |
444 | 444 | "\n",
|
445 |
| - "#\n", |
446 |
| - "price_per_item = chipo_end[['item_name', 'item_price']]\n", |
| 445 | + "# select only the item_name and item_price columns\n", |
| 446 | + "price_per_item = chipo_one_prod[['item_name', 'item_price']]\n", |
447 | 447 | "\n",
|
448 | 448 | "# sort the values from the most to less expensive\n",
|
449 | 449 | "price_per_item.sort_values(by = \"item_price\", ascending = False)"
|
|
665 | 665 | }
|
666 | 666 | ],
|
667 | 667 | "metadata": {
|
| 668 | + "anaconda-cloud": {}, |
668 | 669 | "kernelspec": {
|
669 |
| - "display_name": "Python 2", |
| 670 | + "display_name": "Python [default]", |
670 | 671 | "language": "python",
|
671 | 672 | "name": "python2"
|
672 | 673 | },
|
|
680 | 681 | "name": "python",
|
681 | 682 | "nbconvert_exporter": "python",
|
682 | 683 | "pygments_lexer": "ipython2",
|
683 |
| - "version": "2.7.11" |
| 684 | + "version": "2.7.12" |
684 | 685 | }
|
685 | 686 | },
|
686 | 687 | "nbformat": 4,
|
|
0 commit comments