Skip to content

Commit 6ed9e9a

Browse files
committed
Pushing the docs for revision for branch: master, commit b35345ce39b1c4485bbecb6b83af1a9f7b2d766b
1 parent f1b6c54 commit 6ed9e9a

File tree

794 files changed

+2711
-2711
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

794 files changed

+2711
-2711
lines changed
14 Bytes
14 Bytes
265 Bytes
265 Bytes
11 Bytes
-269 Bytes
-269 Bytes
143 Bytes
143 Bytes
-69 Bytes
-69 Bytes
2.18 KB
2.18 KB

dev/_images/plot_compare_methods.png

-52 Bytes

dev/_images/plot_compare_methods1.png

-52 Bytes

dev/_images/plot_compare_methods2.png

-52 Bytes
1 KB
1 KB
5 Bytes
-27 Bytes
-27 Bytes
-308 Bytes
-308 Bytes
-374 Bytes
-374 Bytes
-215 Bytes
-215 Bytes
-88 Bytes
-88 Bytes
266 Bytes
266 Bytes
175 Bytes
175 Bytes

dev/_images/plot_image_denoising.png

-36 Bytes

dev/_images/plot_image_denoising1.png

-36 Bytes
-31 Bytes
-31 Bytes
-275 Bytes
-143 Bytes
-255 Bytes
-1.19 KB
-1.19 KB
-2.66 KB
-2 Bytes
-2 Bytes
-350 Bytes
-350 Bytes
-966 Bytes
-966 Bytes
-50 Bytes
-50 Bytes

dev/_images/plot_lle_digits_006.png

42 Bytes

dev/_images/plot_lle_digits_0061.png

42 Bytes

dev/_images/plot_lle_digits_007.png

-172 Bytes

dev/_images/plot_lle_digits_0071.png

-172 Bytes

dev/_images/plot_lle_digits_009.png

131 Bytes

dev/_images/plot_lle_digits_0091.png

131 Bytes

dev/_images/plot_lle_digits_010.png

-302 Bytes

dev/_images/plot_lle_digits_0101.png

-302 Bytes

dev/_images/plot_lle_digits_012.png

-227 Bytes

dev/_images/plot_lle_digits_013.png

42 Bytes

dev/_images/plot_lle_digits_0131.png

42 Bytes

dev/_images/plot_manifold_sphere.png

-227 Bytes

dev/_images/plot_manifold_sphere1.png

-227 Bytes
-79 Bytes
103 Bytes
103 Bytes
-814 Bytes
-814 Bytes
-276 Bytes
-276 Bytes
-13 Bytes
-13 Bytes
-447 Bytes
-447 Bytes
1.73 KB
1.73 KB
4.13 KB
4.13 KB
14 Bytes
14 Bytes
-2.56 KB
-2.56 KB
51 Bytes
51 Bytes

dev/_images/plot_theilsen.png

34 Bytes

dev/_images/plot_theilsen1.png

34 Bytes

dev/_images/plot_theilsen_001.png

20 Bytes

dev/_images/plot_theilsen_0011.png

20 Bytes

dev/_images/plot_theilsen_002.png

-7 Bytes
-393 Bytes
-393 Bytes

dev/_sources/auto_examples/applications/plot_model_complexity_influence.txt

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -45,53 +45,53 @@ performance (latency) and predictive power (MSE or Hamming Loss).
4545
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
4646
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
4747
verbose=0, warm_start=False)
48-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.024681s
48+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.024902s
4949

5050
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
5151
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
5252
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
5353
power_t=0.5, random_state=None, shuffle=True, verbose=0,
5454
warm_start=False)
55-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.019110s
55+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.019103s
5656

5757
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
5858
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
5959
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
6060
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
6161
verbose=0, warm_start=False)
62-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.015952s
62+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.015135s
6363

6464
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
6565
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
6666
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
6767
power_t=0.5, random_state=None, shuffle=True, verbose=0,
6868
warm_start=False)
69-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.013032s
69+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.013826s
7070

7171
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
7272
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
7373
verbose=False)
74-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000399s
74+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000400s
7575

7676
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
7777
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
7878
verbose=False)
79-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000720s
79+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000703s
8080

8181
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
8282
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
8383
verbose=False)
84-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001238s
84+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001192s
8585

8686
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
8787
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
8888
verbose=False)
89-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001751s
89+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001682s
9090

9191
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
9292
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
9393
verbose=False)
94-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001986s
94+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001927s
9595

9696
Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
9797
max_depth=3, max_features=None, max_leaf_nodes=None,
@@ -105,7 +105,7 @@ performance (latency) and predictive power (MSE or Hamming Loss).
105105
min_samples_leaf=1, min_samples_split=2,
106106
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
107107
random_state=None, subsample=1.0, verbose=0, warm_start=False)
108-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000203s
108+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000202s
109109

110110
Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
111111
max_depth=3, max_features=None, max_leaf_nodes=None,
@@ -121,15 +121,15 @@ performance (latency) and predictive power (MSE or Hamming Loss).
121121
min_weight_fraction_leaf=0.0, n_estimators=200,
122122
presort='auto', random_state=None, subsample=1.0, verbose=0,
123123
warm_start=False)
124-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000452s
124+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000460s
125125

126126
Benchmarking GradientBoostingRegressor(alpha=0.9, init=None, learning_rate=0.1, loss='ls',
127127
max_depth=3, max_features=None, max_leaf_nodes=None,
128128
min_samples_leaf=1, min_samples_split=2,
129129
min_weight_fraction_leaf=0.0, n_estimators=500,
130130
presort='auto', random_state=None, subsample=1.0, verbose=0,
131131
warm_start=False)
132-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000972s
132+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000993s
133133

134134

135135

@@ -138,6 +138,6 @@ performance (latency) and predictive power (MSE or Hamming Loss).
138138
.. literalinclude:: plot_model_complexity_influence.py
139139
:lines: 16-
140140

141-
**Total running time of the example:** 24.70 seconds
142-
( 0 minutes 24.70 seconds)
141+
**Total running time of the example:** 23.85 seconds
142+
( 0 minutes 23.85 seconds)
143143

dev/_sources/auto_examples/applications/plot_out_of_core_classification.txt

Lines changed: 30 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -55,46 +55,46 @@ feeding them to the learner.
5555
**Script output**::
5656

5757
Test set is 878 documents (108 positive)
58-
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.904 in 1.77s ( 543 docs/s)
59-
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.78s ( 541 docs/s)
60-
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.846 in 1.78s ( 540 docs/s)
61-
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.82s ( 529 docs/s)
58+
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.904 in 1.79s ( 538 docs/s)
59+
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.79s ( 536 docs/s)
60+
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.846 in 1.80s ( 535 docs/s)
61+
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.83s ( 525 docs/s)
6262

6363

64-
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.948 in 5.46s ( 716 docs/s)
65-
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.47s ( 715 docs/s)
66-
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.933 in 5.47s ( 714 docs/s)
67-
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.54s ( 705 docs/s)
64+
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.948 in 5.35s ( 731 docs/s)
65+
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.35s ( 730 docs/s)
66+
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.933 in 5.36s ( 730 docs/s)
67+
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.39s ( 725 docs/s)
6868

6969

70-
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.944 in 9.73s ( 701 docs/s)
71-
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 9.74s ( 700 docs/s)
72-
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 9.74s ( 700 docs/s)
73-
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 9.80s ( 696 docs/s)
70+
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.944 in 8.85s ( 770 docs/s)
71+
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 8.85s ( 770 docs/s)
72+
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 8.86s ( 770 docs/s)
73+
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 8.89s ( 766 docs/s)
7474

7575

76-
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 14.14s ( 690 docs/s)
77-
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 14.15s ( 689 docs/s)
78-
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.959 in 14.15s ( 689 docs/s)
79-
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 14.19s ( 687 docs/s)
76+
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 12.36s ( 789 docs/s)
77+
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 12.37s ( 789 docs/s)
78+
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.959 in 12.37s ( 788 docs/s)
79+
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 12.41s ( 786 docs/s)
8080

8181

82-
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.965 in 17.20s ( 678 docs/s)
83-
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 17.21s ( 678 docs/s)
84-
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 17.21s ( 678 docs/s)
85-
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 17.25s ( 677 docs/s)
82+
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.965 in 15.53s ( 752 docs/s)
83+
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.53s ( 752 docs/s)
84+
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 15.53s ( 751 docs/s)
85+
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 15.57s ( 750 docs/s)
8686

8787

88-
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.967 in 20.98s ( 696 docs/s)
89-
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 20.99s ( 696 docs/s)
90-
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 20.99s ( 696 docs/s)
91-
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 21.03s ( 695 docs/s)
88+
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.967 in 19.09s ( 766 docs/s)
89+
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 19.10s ( 765 docs/s)
90+
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 19.10s ( 765 docs/s)
91+
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 19.14s ( 764 docs/s)
9292

9393

94-
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 24.45s ( 709 docs/s)
95-
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 24.46s ( 709 docs/s)
96-
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 24.46s ( 709 docs/s)
97-
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 24.50s ( 708 docs/s)
94+
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 22.38s ( 775 docs/s)
95+
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 22.39s ( 775 docs/s)
96+
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 22.39s ( 775 docs/s)
97+
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 22.43s ( 774 docs/s)
9898

9999

100100

@@ -103,6 +103,6 @@ feeding them to the learner.
103103
.. literalinclude:: plot_out_of_core_classification.py
104104
:lines: 25-
105105

106-
**Total running time of the example:** 26.52 seconds
107-
( 0 minutes 26.52 seconds)
106+
**Total running time of the example:** 24.46 seconds
107+
( 0 minutes 24.46 seconds)
108108

dev/_sources/auto_examples/applications/plot_outlier_detection_housing.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -72,6 +72,6 @@ risk of over-fitting the data.
7272
.. literalinclude:: plot_outlier_detection_housing.py
7373
:lines: 48-
7474

75-
**Total running time of the example:** 4.92 seconds
76-
( 0 minutes 4.92 seconds)
75+
**Total running time of the example:** 4.86 seconds
76+
( 0 minutes 4.86 seconds)
7777

dev/_sources/auto_examples/applications/plot_prediction_latency.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ The plots represent the distribution of the prediction latency as a boxplot.
5858
benchmarking with 100 features
5959
benchmarking with 250 features
6060
benchmarking with 500 features
61-
example run in 2.98s
61+
example run in 3.04s
6262

6363

6464

@@ -67,6 +67,6 @@ The plots represent the distribution of the prediction latency as a boxplot.
6767
.. literalinclude:: plot_prediction_latency.py
6868
:lines: 15-
6969

70-
**Total running time of the example:** 2.99 seconds
71-
( 0 minutes 2.99 seconds)
70+
**Total running time of the example:** 3.04 seconds
71+
( 0 minutes 3.04 seconds)
7272

dev/_sources/auto_examples/applications/plot_species_distribution_modeling.txt

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ References
6262

6363
Area under the ROC curve : 0.993919
6464

65-
time elapsed: 6.92s
65+
time elapsed: 6.82s
6666

6767

6868

@@ -71,6 +71,6 @@ References
7171
.. literalinclude:: plot_species_distribution_modeling.py
7272
:lines: 38-
7373

74-
**Total running time of the example:** 6.92 seconds
75-
( 0 minutes 6.92 seconds)
74+
**Total running time of the example:** 6.83 seconds
75+
( 0 minutes 6.83 seconds)
7676

dev/_sources/auto_examples/applications/plot_stock_market.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -91,6 +91,6 @@ axis.
9191
.. literalinclude:: plot_stock_market.py
9292
:lines: 62-
9393

94-
**Total running time of the example:** 10.90 seconds
95-
( 0 minutes 10.90 seconds)
94+
**Total running time of the example:** 10.21 seconds
95+
( 0 minutes 10.21 seconds)
9696

dev/_sources/auto_examples/applications/plot_tomography_l1_reconstruction.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -51,6 +51,6 @@ contributed to fewer projections than the central disk.
5151
.. literalinclude:: plot_tomography_l1_reconstruction.py
5252
:lines: 37-
5353

54-
**Total running time of the example:** 8.91 seconds
55-
( 0 minutes 8.91 seconds)
54+
**Total running time of the example:** 9.49 seconds
55+
( 0 minutes 9.49 seconds)
5656

dev/_sources/auto_examples/bicluster/plot_spectral_biclustering.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -56,6 +56,6 @@ representation of the checkerboard structure.
5656
.. literalinclude:: plot_spectral_biclustering.py
5757
:lines: 18-
5858

59-
**Total running time of the example:** 0.76 seconds
60-
( 0 minutes 0.76 seconds)
59+
**Total running time of the example:** 0.77 seconds
60+
( 0 minutes 0.77 seconds)
6161

dev/_sources/auto_examples/calibration/plot_calibration_curve.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -118,6 +118,6 @@ but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
118118
.. literalinclude:: plot_calibration_curve.py
119119
:lines: 44-
120120

121-
**Total running time of the example:** 2.45 seconds
122-
( 0 minutes 2.45 seconds)
121+
**Total running time of the example:** 2.38 seconds
122+
( 0 minutes 2.38 seconds)
123123

dev/_sources/auto_examples/calibration/plot_compare_calibration.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -64,6 +64,6 @@ with different biases per method:
6464
.. literalinclude:: plot_compare_calibration.py
6565
:lines: 50-
6666

67-
**Total running time of the example:** 2.49 seconds
68-
( 0 minutes 2.49 seconds)
67+
**Total running time of the example:** 2.51 seconds
68+
( 0 minutes 2.51 seconds)
6969

dev/_sources/auto_examples/classification/plot_classifier_comparison.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,6 @@ set.
3434
.. literalinclude:: plot_classifier_comparison.py
3535
:lines: 23-
3636

37-
**Total running time of the example:** 8.36 seconds
38-
( 0 minutes 8.36 seconds)
37+
**Total running time of the example:** 8.32 seconds
38+
( 0 minutes 8.32 seconds)
3939

dev/_sources/auto_examples/classification/plot_lda.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,6 @@ Shows how shrinkage improves classification.
2222
.. literalinclude:: plot_lda.py
2323
:lines: 8-
2424

25-
**Total running time of the example:** 5.56 seconds
26-
( 0 minutes 5.56 seconds)
25+
**Total running time of the example:** 5.58 seconds
26+
( 0 minutes 5.58 seconds)
2727

dev/_sources/auto_examples/cluster/plot_adjusted_for_chance_measures.txt

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -45,15 +45,15 @@ value of k on various overlapping sub-samples of the dataset.
4545
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
4646
done in 0.088s
4747
Computing v_measure_score for 10 values of n_clusters and n_samples=100
48-
done in 0.024s
48+
done in 0.025s
4949
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
50-
done in 0.391s
50+
done in 0.388s
5151
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
52-
done in 0.016s
52+
done in 0.017s
5353
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
54-
done in 0.058s
54+
done in 0.057s
5555
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
56-
done in 0.035s
56+
done in 0.036s
5757
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
5858
done in 0.230s
5959
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
@@ -66,6 +66,6 @@ value of k on various overlapping sub-samples of the dataset.
6666
.. literalinclude:: plot_adjusted_for_chance_measures.py
6767
:lines: 23-
6868

69-
**Total running time of the example:** 1.04 seconds
70-
( 0 minutes 1.04 seconds)
69+
**Total running time of the example:** 1.05 seconds
70+
( 0 minutes 1.05 seconds)
7171

dev/_sources/auto_examples/cluster/plot_agglomerative_clustering.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -57,6 +57,6 @@ percolation instability.
5757
.. literalinclude:: plot_agglomerative_clustering.py
5858
:lines: 23-
5959

60-
**Total running time of the example:** 7.49 seconds
61-
( 0 minutes 7.49 seconds)
60+
**Total running time of the example:** 7.50 seconds
61+
( 0 minutes 7.50 seconds)
6262

dev/_sources/auto_examples/cluster/plot_agglomerative_clustering_metrics.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -84,6 +84,6 @@ thus the clustering puts them in the same cluster.
8484
.. literalinclude:: plot_agglomerative_clustering_metrics.py
8585
:lines: 35-
8686

87-
**Total running time of the example:** 1.34 seconds
88-
( 0 minutes 1.34 seconds)
87+
**Total running time of the example:** 1.40 seconds
88+
( 0 minutes 1.40 seconds)
8989

0 commit comments

Comments
 (0)