|
| 1 | +package com.thealgorithms.datastructures.hashmap.hashing; |
| 2 | + |
| 3 | + |
| 4 | +import java.lang.Math; |
| 5 | +import java.util.Objects; |
| 6 | + |
| 7 | +/** |
| 8 | + * This class is an implementation of a hash table using Cuckoo Hashing It uses |
| 9 | + * a dynamic array to lengthen the size of the hash table when load factor > .7 |
| 10 | + * |
| 11 | + * <a href="https://en.wikipedia.org/wiki/Cuckoo_hashing">...</a> |
| 12 | + */ |
| 13 | +public class HashMapCuckooHashing { |
| 14 | + |
| 15 | + private int tableSize; // size of the hash table |
| 16 | + private Integer[] buckets; // array representing the table |
| 17 | + private final Integer AVAILABLE; |
| 18 | + private int size; // number of elements in the hash table |
| 19 | + |
| 20 | + private int thresh; // threshold for infinite loop checking |
| 21 | + |
| 22 | + /** |
| 23 | + * Constructor initializes buckets array, hsize, and creates dummy object |
| 24 | + * for AVAILABLE |
| 25 | + * |
| 26 | + * @param tableSize the desired size of the hash map |
| 27 | + */ |
| 28 | + public HashMapCuckooHashing(int tableSize) { |
| 29 | + this.buckets = new Integer[tableSize]; |
| 30 | + this.tableSize = tableSize; |
| 31 | + this.AVAILABLE = Integer.MIN_VALUE; |
| 32 | + this.size = 0; |
| 33 | + this.thresh = (int) (Math.log(tableSize) / Math.log(2)) + 2; |
| 34 | + } |
| 35 | + |
| 36 | + /** |
| 37 | + * The 2 Hash Functions takes a given key and finds an index based on its data, 2 distinctive ways to minimize collisions |
| 38 | + * |
| 39 | + * @param key the desired key to be converted |
| 40 | + * @return int an index corresponding to the key |
| 41 | + */ |
| 42 | + |
| 43 | + public int hashFunction1(int key) { |
| 44 | + int hash = key % tableSize; |
| 45 | + if (hash < 0) { |
| 46 | + hash += tableSize; |
| 47 | + } |
| 48 | + return hash; |
| 49 | + } |
| 50 | + |
| 51 | + public int hashFunction2(int key) { |
| 52 | + int hash = key / tableSize; |
| 53 | + hash %= tableSize; |
| 54 | + if (hash < 0) { |
| 55 | + hash += tableSize; |
| 56 | + } |
| 57 | + return hash; |
| 58 | + } |
| 59 | + |
| 60 | + /** |
| 61 | + * inserts the key into the hash map by wrapping it as an Integer object, then uses while loop to insert new key |
| 62 | + * if desired place is empty, return. |
| 63 | + * if already occupied, continue while loop over the new key that has just been pushed out. |
| 64 | + * if while loop continues more than Thresh, rehash table to new size, then push again. |
| 65 | + * |
| 66 | + * @param key the desired key to be inserted in the hash map |
| 67 | + */ |
| 68 | + |
| 69 | + public void insertKey2HashTable(int key) { |
| 70 | + Integer wrappedInt = key, temp; |
| 71 | + int hash, loopCounter = 0; |
| 72 | + |
| 73 | + if (isFull()) { |
| 74 | + System.out.println("Hash table is full, lengthening & rehashing table"); |
| 75 | + reHashTableIncreasesTableSize(); |
| 76 | + } |
| 77 | + |
| 78 | + if (checkTableContainsKey(key)) { |
| 79 | + throw new IllegalArgumentException("Key already inside, no duplicates allowed"); |
| 80 | + } |
| 81 | + |
| 82 | + while (loopCounter <= thresh) { |
| 83 | + loopCounter++; |
| 84 | + hash = hashFunction1(key); |
| 85 | + |
| 86 | + if ((buckets[hash] == null) || Objects.equals(buckets[hash], AVAILABLE)) { |
| 87 | + buckets[hash] = wrappedInt; |
| 88 | + size++; |
| 89 | + checkLoadFactor(); |
| 90 | + return; |
| 91 | + } |
| 92 | + |
| 93 | + temp = buckets[hash]; |
| 94 | + buckets[hash] = wrappedInt; |
| 95 | + wrappedInt = temp; |
| 96 | + hash = hashFunction2(temp); |
| 97 | + if (Objects.equals(buckets[hash], AVAILABLE)) { |
| 98 | + buckets[hash] = wrappedInt; |
| 99 | + size++; |
| 100 | + checkLoadFactor(); |
| 101 | + return; |
| 102 | + } else if (buckets[hash] == null) { |
| 103 | + buckets[hash] = wrappedInt; |
| 104 | + size++; |
| 105 | + checkLoadFactor(); |
| 106 | + return; |
| 107 | + } |
| 108 | + |
| 109 | + temp = buckets[hash]; |
| 110 | + buckets[hash] = wrappedInt; |
| 111 | + wrappedInt = temp; |
| 112 | + } |
| 113 | + System.out.println("Infinite loop occurred, lengthening & rehashing table"); |
| 114 | + reHashTableIncreasesTableSize(); |
| 115 | + insertKey2HashTable(key); |
| 116 | + } |
| 117 | + |
| 118 | + /** |
| 119 | + * creates new HashMapCuckooHashing object, then inserts each of the elements in the previous table to it with its new hash functions. |
| 120 | + * then refers current array to new table. |
| 121 | + * |
| 122 | + */ |
| 123 | + public void reHashTableIncreasesTableSize() { |
| 124 | + HashMapCuckooHashing newT = new HashMapCuckooHashing(tableSize * 2); |
| 125 | + for (int i = 0; i < tableSize; i++) { |
| 126 | + if (buckets[i] != null && !Objects.equals(buckets[i], AVAILABLE)) { |
| 127 | + newT.insertKey2HashTable(this.buckets[i]); |
| 128 | + } |
| 129 | + } |
| 130 | + this.tableSize *= 2; |
| 131 | + this.buckets = newT.buckets; |
| 132 | + this.thresh = (int) (Math.log(tableSize) / Math.log(2)) + 2; |
| 133 | + } |
| 134 | + |
| 135 | + |
| 136 | + /** |
| 137 | + * deletes a key from the hash map and adds an available placeholder |
| 138 | + * |
| 139 | + * @param key the desired key to be deleted |
| 140 | + */ |
| 141 | + public void deleteKeyFromHashTable(int key) { |
| 142 | + Integer wrappedInt = key; |
| 143 | + int hash = hashFunction1(key); |
| 144 | + if (isEmpty()) { |
| 145 | + throw new IllegalArgumentException("Table is empty"); |
| 146 | + } |
| 147 | + |
| 148 | + if (Objects.equals(buckets[hash], wrappedInt)) { |
| 149 | + buckets[hash] = AVAILABLE; |
| 150 | + size--; |
| 151 | + return; |
| 152 | + } |
| 153 | + |
| 154 | + hash = hashFunction2(key); |
| 155 | + if (Objects.equals(buckets[hash], wrappedInt)) { |
| 156 | + buckets[hash] = AVAILABLE; |
| 157 | + size--; |
| 158 | + return; |
| 159 | + } |
| 160 | + throw new IllegalArgumentException("Key " + key + " already inside, no duplicates allowed"); |
| 161 | + } |
| 162 | + |
| 163 | + /** |
| 164 | + * Displays the hash table line by line |
| 165 | + */ |
| 166 | + public void displayHashtable() { |
| 167 | + for (int i = 0; i < tableSize; i++) { |
| 168 | + if ((buckets[i] == null) || Objects.equals(buckets[i], AVAILABLE)) { |
| 169 | + System.out.println("Bucket " + i + ": Empty"); |
| 170 | + } else { |
| 171 | + System.out.println("Bucket " + i + ": " + buckets[i].toString()); |
| 172 | + } |
| 173 | + } |
| 174 | + System.out.println(); |
| 175 | + } |
| 176 | + |
| 177 | + /** |
| 178 | + * Finds the index of location based on an inputted key |
| 179 | + * |
| 180 | + * @param key the desired key to be found |
| 181 | + * @return int the index where the key is located |
| 182 | + */ |
| 183 | + public int findKeyInTable(int key) { |
| 184 | + Integer wrappedInt = key; |
| 185 | + int hash = hashFunction1(key); |
| 186 | + |
| 187 | + if (isEmpty()) { |
| 188 | + throw new IllegalArgumentException("Table is empty"); |
| 189 | + } |
| 190 | + |
| 191 | + if (Objects.equals(buckets[hash], wrappedInt)) return hash; |
| 192 | + |
| 193 | + hash = hashFunction2(key); |
| 194 | + if (!Objects.equals(buckets[hash], wrappedInt)) |
| 195 | + throw new IllegalArgumentException("Key " + key + " not found in table"); |
| 196 | + else { |
| 197 | + return hash; |
| 198 | + } |
| 199 | + } |
| 200 | + /** |
| 201 | + * checks if key is inside without any output other than returned boolean. |
| 202 | + * |
| 203 | + * @param key the desired key to be found |
| 204 | + * @return int the index where the key is located |
| 205 | + */ |
| 206 | + public boolean checkTableContainsKey(int key){ |
| 207 | + return ((buckets[hashFunction1(key)] != null && buckets[hashFunction1(key)].equals(key)) || (buckets[hashFunction2(key)] != null && buckets[hashFunction2(key)] == key)); |
| 208 | + } |
| 209 | + |
| 210 | + /** |
| 211 | + * Checks the load factor of the hash table if greater than .7, |
| 212 | + * automatically lengthens table to prevent further collisions |
| 213 | + */ |
| 214 | + public double checkLoadFactor() { |
| 215 | + double factor = (double) size / tableSize; |
| 216 | + if (factor > .7) { |
| 217 | + System.out.printf("Load factor is %.2f , rehashing table\n", factor); |
| 218 | + reHashTableIncreasesTableSize(); |
| 219 | + } |
| 220 | + return factor; |
| 221 | + } |
| 222 | + |
| 223 | + /** |
| 224 | + * isFull returns true if the hash map is full and false if not full |
| 225 | + * |
| 226 | + * @return boolean is Empty |
| 227 | + */ |
| 228 | + public boolean isFull() { |
| 229 | + boolean response = true; |
| 230 | + for (int i = 0; i < tableSize; i++) { |
| 231 | + if (buckets[i] == null || Objects.equals(buckets[i], AVAILABLE)) { |
| 232 | + return false; |
| 233 | + } |
| 234 | + } |
| 235 | + return response; |
| 236 | + } |
| 237 | + |
| 238 | + /** |
| 239 | + * isEmpty returns true if the hash map is empty and false if not empty |
| 240 | + * |
| 241 | + * @return boolean is Empty |
| 242 | + */ |
| 243 | + public boolean isEmpty() { |
| 244 | + boolean response = true; |
| 245 | + for (int i = 0; i < tableSize; i++) { |
| 246 | + if (buckets[i] != null) { |
| 247 | + response = false; |
| 248 | + break; |
| 249 | + } |
| 250 | + } |
| 251 | + return response; |
| 252 | + } |
| 253 | + public int getNumberOfKeysInTable(){return size;} |
| 254 | +} |
0 commit comments