|
20 | 20 | import numpy
|
21 | 21 | from HiddenLayer import HiddenLayer
|
22 | 22 | from LogisticRegression import LogisticRegression
|
23 |
| -from RestrictedBoltzmannMachine import RBM |
| 23 | +from RestrictedBoltzmannMachine import RBM, CRBM |
24 | 24 | from utils import *
|
25 | 25 |
|
26 | 26 |
|
@@ -143,6 +143,80 @@ def predict(self, x):
|
143 | 143 | out = self.log_layer.predict(layer_input)
|
144 | 144 | return out
|
145 | 145 |
|
| 146 | +''' |
| 147 | + DBN w/ continuous-valued inputs (Linear Energy) |
| 148 | + |
| 149 | +''' |
| 150 | +class CDBN(DBN): |
| 151 | + def __init__(self, input=None, label=None,\ |
| 152 | + n_ins=2, hidden_layer_sizes=[3, 3], n_outs=2,\ |
| 153 | + numpy_rng=None): |
| 154 | + |
| 155 | + self.x = input |
| 156 | + self.y = label |
| 157 | + |
| 158 | + self.sigmoid_layers = [] |
| 159 | + self.rbm_layers = [] |
| 160 | + self.n_layers = len(hidden_layer_sizes) # = len(self.rbm_layers) |
| 161 | + |
| 162 | + if numpy_rng is None: |
| 163 | + numpy_rng = numpy.random.RandomState(1234) |
| 164 | + |
| 165 | + |
| 166 | + assert self.n_layers > 0 |
| 167 | + |
| 168 | + |
| 169 | + # construct multi-layer |
| 170 | + for i in xrange(self.n_layers): |
| 171 | + # layer_size |
| 172 | + if i == 0: |
| 173 | + input_size = n_ins |
| 174 | + else: |
| 175 | + input_size = hidden_layer_sizes[i - 1] |
| 176 | + |
| 177 | + # layer_input |
| 178 | + if i == 0: |
| 179 | + layer_input = self.x |
| 180 | + else: |
| 181 | + layer_input = self.sigmoid_layers[-1].sample_h_given_v() |
| 182 | + |
| 183 | + # construct sigmoid_layer |
| 184 | + sigmoid_layer = HiddenLayer(input=layer_input, |
| 185 | + n_in=input_size, |
| 186 | + n_out=hidden_layer_sizes[i], |
| 187 | + numpy_rng=numpy_rng, |
| 188 | + activation=sigmoid) |
| 189 | + self.sigmoid_layers.append(sigmoid_layer) |
| 190 | + |
| 191 | + # construct rbm_layer |
| 192 | + if i == 0: |
| 193 | + rbm_layer = CRBM(input=layer_input, # continuous-valued inputs |
| 194 | + n_visible=input_size, |
| 195 | + n_hidden=hidden_layer_sizes[i], |
| 196 | + W=sigmoid_layer.W, # W, b are shared |
| 197 | + hbias=sigmoid_layer.b) |
| 198 | + else: |
| 199 | + rbm_layer = RBM(input=layer_input, |
| 200 | + n_visible=input_size, |
| 201 | + n_hidden=hidden_layer_sizes[i], |
| 202 | + W=sigmoid_layer.W, # W, b are shared |
| 203 | + hbias=sigmoid_layer.b) |
| 204 | + |
| 205 | + self.rbm_layers.append(rbm_layer) |
| 206 | + |
| 207 | + |
| 208 | + # layer for output using Logistic Regression |
| 209 | + self.log_layer = LogisticRegression(input=self.sigmoid_layers[-1].sample_h_given_v(), |
| 210 | + label=self.y, |
| 211 | + n_in=hidden_layer_sizes[-1], |
| 212 | + n_out=n_outs) |
| 213 | + |
| 214 | + # finetune cost: the negative log likelihood of the logistic regression layer |
| 215 | + self.finetune_cost = self.log_layer.negative_log_likelihood() |
| 216 | + |
| 217 | + |
| 218 | + |
| 219 | + |
146 | 220 |
|
147 | 221 | def test_dbn(pretrain_lr=0.1, pretraining_epochs=1000, k=1, \
|
148 | 222 | finetune_lr=0.1, finetune_epochs=200):
|
@@ -181,5 +255,51 @@ def test_dbn(pretrain_lr=0.1, pretraining_epochs=1000, k=1, \
|
181 | 255 | print dbn.predict(x)
|
182 | 256 |
|
183 | 257 |
|
| 258 | + |
| 259 | +def test_cdbn(pretrain_lr=0.1, pretraining_epochs=1000, k=1, \ |
| 260 | + finetune_lr=0.1, finetune_epochs=200): |
| 261 | + |
| 262 | + x = numpy.array([[0.4, 0.5, 0.5, 0., 0., 0.], |
| 263 | + [0.5, 0.3, 0.5, 0., 0., 0.], |
| 264 | + [0.4, 0.5, 0.5, 0., 0., 0.], |
| 265 | + [0., 0., 0.5, 0.3, 0.5, 0.], |
| 266 | + [0., 0., 0.5, 0.4, 0.5, 0.], |
| 267 | + [0., 0., 0.5, 0.5, 0.5, 0.]]) |
| 268 | + |
| 269 | + y = numpy.array([[1, 0], |
| 270 | + [1, 0], |
| 271 | + [1, 0], |
| 272 | + [0, 1], |
| 273 | + [0, 1], |
| 274 | + [0, 1]]) |
| 275 | + |
| 276 | + |
| 277 | + rng = numpy.random.RandomState(123) |
| 278 | + |
| 279 | + # construct DBN |
| 280 | + dbn = CDBN(input=x, label=y, n_ins=6, hidden_layer_sizes=[5, 5], n_outs=2, numpy_rng=rng) |
| 281 | + |
| 282 | + # pre-training (TrainUnsupervisedDBN) |
| 283 | + dbn.pretrain(lr=pretrain_lr, k=1, epochs=pretraining_epochs) |
| 284 | + |
| 285 | + # fine-tuning (DBNSupervisedFineTuning) |
| 286 | + dbn.finetune(lr=finetune_lr, epochs=finetune_epochs) |
| 287 | + |
| 288 | + |
| 289 | + # test |
| 290 | + x = numpy.array([[0.5, 0.5, 0., 0., 0., 0.], |
| 291 | + [0., 0., 0., 0.5, 0.5, 0.], |
| 292 | + [0.5, 0.5, 0.5, 0.5, 0.5, 0.]]) |
| 293 | + |
| 294 | + |
| 295 | + print dbn.predict(x) |
| 296 | + |
| 297 | + |
| 298 | + |
| 299 | + |
184 | 300 | if __name__ == "__main__":
|
| 301 | + print >> sys.stderr, 'DBN' |
185 | 302 | test_dbn()
|
| 303 | + print >> sys.stderr |
| 304 | + print >> sys.stderr, 'CDBN' |
| 305 | + test_cdbn() |
0 commit comments