|
| 1 | +#include <iostream> |
| 2 | +#include <math.h> |
| 3 | +#include "RBM.h" |
| 4 | +using namespace std; |
| 5 | + |
| 6 | + |
| 7 | +RBM::RBM(int size, int n_v, int n_h) { |
| 8 | + N = size; |
| 9 | + n_visible = n_v; |
| 10 | + n_hidden = n_h; |
| 11 | + |
| 12 | + W = new double*[n_hidden]; |
| 13 | + for (int i=0; i<n_hidden; i++) W[i] = new double[n_visible]; |
| 14 | + hbias = new double[n_hidden]; |
| 15 | + vbias = new double[n_visible]; |
| 16 | + |
| 17 | + double a = 1.0 / n_visible; |
| 18 | + |
| 19 | + for(int i=0; i<n_hidden; i++) { |
| 20 | + for(int j=0; j<n_visible; j++) { |
| 21 | + W[i][j] = uniform(-a, a); |
| 22 | + } |
| 23 | + } |
| 24 | +} |
| 25 | + |
| 26 | +RBM::~RBM() { |
| 27 | + for (int i=0; i<n_hidden; i++) delete[] W[i]; |
| 28 | + delete[] W; |
| 29 | + delete[] hbias; |
| 30 | + delete[] vbias; |
| 31 | +} |
| 32 | + |
| 33 | +double RBM::uniform(double min, double max) { |
| 34 | + return rand() / (RAND_MAX + 1.0) * (max - min) + min; |
| 35 | +} |
| 36 | + |
| 37 | +int RBM::binomial(int n, double p) { |
| 38 | + if(p < 0 || p > 1) return 0; |
| 39 | + |
| 40 | + int c = 0; |
| 41 | + double r; |
| 42 | + |
| 43 | + for (int i=0; i<n; i++) { |
| 44 | + r = rand() / (RAND_MAX + 1.0); |
| 45 | + if (r < p) c++; |
| 46 | + } |
| 47 | + |
| 48 | + return c; |
| 49 | +} |
| 50 | + |
| 51 | +double RBM::sigmoid(double x) { |
| 52 | + return 1.0 / (1.0 + exp(-x)); |
| 53 | +} |
| 54 | + |
| 55 | + |
| 56 | +void RBM::contrastive_divergence(int *input, double lr, int k) { |
| 57 | + double *ph_mean = new double[n_hidden]; |
| 58 | + int *ph_sample = new int[n_hidden]; |
| 59 | + double *nv_means = new double[n_visible]; |
| 60 | + int *nv_samples = new int[n_visible]; |
| 61 | + double *nh_means = new double[n_hidden]; |
| 62 | + int *nh_samples = new int[n_hidden]; |
| 63 | + |
| 64 | + /* CD-k */ |
| 65 | + sample_h_given_v(input, ph_mean, ph_sample); |
| 66 | + |
| 67 | + for (int step=0; step<k; step++) { |
| 68 | + if (step == 0) { |
| 69 | + gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples); |
| 70 | + } else { |
| 71 | + gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples); |
| 72 | + } |
| 73 | + } |
| 74 | + |
| 75 | + for (int i=0; i<n_hidden; i++) { |
| 76 | + for (int j=0; j<n_visible; j++) { |
| 77 | + W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]); |
| 78 | + } |
| 79 | + hbias[i] += lr * (ph_sample[i] - nh_means[i]); |
| 80 | + } |
| 81 | + |
| 82 | + for (int i=0; i<n_visible; i++) { |
| 83 | + vbias[i] += lr * (input[i] - nv_samples[i]); |
| 84 | + } |
| 85 | + |
| 86 | + delete[] ph_mean; |
| 87 | + delete[] ph_sample; |
| 88 | + delete[] nv_means; |
| 89 | + delete[] nv_samples; |
| 90 | + delete[] nh_means; |
| 91 | + delete[] nh_samples; |
| 92 | +} |
| 93 | + |
| 94 | +void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) { |
| 95 | + for (int i=0; i<n_hidden; i++) { |
| 96 | + mean[i] = propup(v0_sample, W[i], hbias[i]); |
| 97 | + sample[i] = binomial(1, mean[i]); |
| 98 | + } |
| 99 | +} |
| 100 | + |
| 101 | +void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) { |
| 102 | + for (int i=0; i<n_visible; i++) { |
| 103 | + mean[i] = propdown(h0_sample, i, vbias[i]); |
| 104 | + sample[i] = binomial(1, mean[i]); |
| 105 | + } |
| 106 | +} |
| 107 | + |
| 108 | +double RBM::propup(int *v, double *w, double b) { |
| 109 | + double pre_sigmoid_activation = 0.0; |
| 110 | + for(int j=0; j<n_visible; j++) { |
| 111 | + pre_sigmoid_activation += w[j] * v[j]; |
| 112 | + } |
| 113 | + pre_sigmoid_activation += b; |
| 114 | + return sigmoid(pre_sigmoid_activation); |
| 115 | +} |
| 116 | + |
| 117 | +double RBM::propdown(int *h, int i, double b) { |
| 118 | + double pre_sigmoid_activation = 0.0; |
| 119 | + for (int j=0; j<n_hidden; j++) { |
| 120 | + pre_sigmoid_activation += W[j][i] * h[j]; |
| 121 | + } |
| 122 | + pre_sigmoid_activation += b; |
| 123 | + return sigmoid(pre_sigmoid_activation); |
| 124 | +} |
| 125 | + |
| 126 | +void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, \ |
| 127 | + double *nh_means, int *nh_samples) { |
| 128 | + sample_v_given_h(h0_sample, nv_means, nv_samples); |
| 129 | + sample_h_given_v(nv_samples, nh_means, nh_samples); |
| 130 | +} |
| 131 | + |
| 132 | +void RBM::reconstruct(int *v, double *reconstructed_v) { |
| 133 | + double *h = new double[n_hidden]; |
| 134 | + double pre_sigmoid_activation; |
| 135 | + |
| 136 | + for (int i=0; i<n_hidden; i++) { |
| 137 | + h[i] = propup(v, W[i], hbias[i]); |
| 138 | + } |
| 139 | + |
| 140 | + for (int i=0; i<n_visible; i++) { |
| 141 | + pre_sigmoid_activation = 0.0; |
| 142 | + for (int j=0; j<n_hidden; j++) { |
| 143 | + pre_sigmoid_activation += W[j][i] * h[j]; |
| 144 | + } |
| 145 | + pre_sigmoid_activation += vbias[i]; |
| 146 | + |
| 147 | + reconstructed_v[i] = sigmoid(pre_sigmoid_activation); |
| 148 | + } |
| 149 | + |
| 150 | + delete[] h; |
| 151 | +} |
| 152 | + |
| 153 | + |
| 154 | +void test_rbm() { |
| 155 | + srand(0); |
| 156 | + |
| 157 | + double learning_rate = 0.1; |
| 158 | + int training_epochs = 100; |
| 159 | + int k = 1; |
| 160 | + |
| 161 | + int train_N = 6; |
| 162 | + int test_N = 2; |
| 163 | + int n_visible = 6; |
| 164 | + int n_hidden = 3; |
| 165 | + |
| 166 | + // training data |
| 167 | + int train_X[6][6] = { |
| 168 | + {1, 1, 1, 0, 0, 0}, |
| 169 | + {1, 0, 1, 0, 0, 0}, |
| 170 | + {1, 1, 1, 0, 0, 0}, |
| 171 | + {0, 0, 1, 1, 1, 0}, |
| 172 | + {0, 0, 1, 0, 1, 0}, |
| 173 | + {0, 0, 1, 1, 1, 0} |
| 174 | + }; |
| 175 | + |
| 176 | + // construct RBM |
| 177 | + RBM rbm(train_N, n_visible, n_hidden); |
| 178 | + |
| 179 | + // train |
| 180 | + for (int epoch=0; epoch<training_epochs; epoch++) { |
| 181 | + for (int i=0; i<train_N; i++) { |
| 182 | + rbm.contrastive_divergence(train_X[i], learning_rate, k); |
| 183 | + } |
| 184 | + } |
| 185 | + |
| 186 | + // test data |
| 187 | + int test_X[2][6] = { |
| 188 | + {1, 1, 0, 0, 0, 0}, |
| 189 | + {0, 0, 0, 1, 1, 0} |
| 190 | + }; |
| 191 | + double reconstructed_X[2][6]; |
| 192 | + |
| 193 | + |
| 194 | + // test |
| 195 | + for (int i=0; i<test_N; i++) { |
| 196 | + rbm.reconstruct(test_X[i], reconstructed_X[i]); |
| 197 | + for (int j=0; j<n_visible; j++) { |
| 198 | + printf("%.5f ", reconstructed_X[i][j]); |
| 199 | + } |
| 200 | + cout << endl; |
| 201 | + } |
| 202 | + |
| 203 | +} |
| 204 | + |
| 205 | + |
| 206 | + |
| 207 | +int main() { |
| 208 | + test_rbm(); |
| 209 | + return 0; |
| 210 | +} |
0 commit comments