|
| 1 | +import scala.util.Random |
| 2 | +import scala.math |
| 3 | + |
| 4 | +class dA(val N: Int, val n_visible: Int, val n_hidden: Int, |
| 5 | + _W: Array[Array[Double]]=null, _hbias: Array[Double]=null, _vbias: Array[Double]=null, |
| 6 | + var rng: Random=null) { |
| 7 | + |
| 8 | + var W: Array[Array[Double]] = Array.ofDim[Double](n_hidden, n_visible) |
| 9 | + var hbias: Array[Double] = new Array[Double](n_hidden) |
| 10 | + var vbias: Array[Double] = new Array[Double](n_visible) |
| 11 | + |
| 12 | + |
| 13 | + if(rng == null) rng = new Random(1234) |
| 14 | + |
| 15 | + if(_W == null) { |
| 16 | + var i: Int = 0 |
| 17 | + var j: Int = 0 |
| 18 | + |
| 19 | + val a: Double = 1 / n_visible |
| 20 | + for(i <- 0 until n_hidden) |
| 21 | + for(j <- 0 until n_visible) |
| 22 | + W(i)(j) = uniform(-a, a) |
| 23 | + |
| 24 | + } else { |
| 25 | + W = _W |
| 26 | + } |
| 27 | + |
| 28 | + if(_hbias == null) { |
| 29 | + var i: Int = 0 |
| 30 | + for(i <- 0 until n_hidden) hbias(i) = 0 |
| 31 | + } else { |
| 32 | + hbias = _hbias |
| 33 | + } |
| 34 | + |
| 35 | + if(_vbias == null) { |
| 36 | + var i: Int = 0 |
| 37 | + for(i <- 0 until n_visible) vbias(i) = 0 |
| 38 | + } else { |
| 39 | + vbias = _vbias |
| 40 | + } |
| 41 | + |
| 42 | + |
| 43 | + def uniform(min: Double, max: Double): Double = rng.nextDouble() * (max - min) + min |
| 44 | + def binomial(n: Int, p: Double): Int = { |
| 45 | + if(p < 0 || p > 1) return 0 |
| 46 | + |
| 47 | + var c: Int = 0 |
| 48 | + var r: Double = 0 |
| 49 | + |
| 50 | + var i: Int = 0 |
| 51 | + for(i <- 0 until n) { |
| 52 | + r = rng.nextDouble() |
| 53 | + if(r < p) c += 1 |
| 54 | + } |
| 55 | + |
| 56 | + c |
| 57 | + } |
| 58 | + |
| 59 | + def sigmoid(x: Double): Double = 1.0 / (1.0 + math.pow(math.E, -x)) |
| 60 | + |
| 61 | + |
| 62 | + def get_corrupted_input(x: Array[Int], tilde_x: Array[Int], p: Double) { |
| 63 | + var i: Int = 0; |
| 64 | + for(i <- 0 until n_visible) { |
| 65 | + if(x(i) == 0) { |
| 66 | + tilde_x(i) = 0; |
| 67 | + } else { |
| 68 | + tilde_x(i) = binomial(1, p) |
| 69 | + } |
| 70 | + } |
| 71 | + } |
| 72 | + |
| 73 | + // Encode |
| 74 | + def get_hidden_values(x: Array[Int], y: Array[Double]) { |
| 75 | + var i: Int = 0 |
| 76 | + var j: Int = 0 |
| 77 | + for(i <- 0 until n_hidden) { |
| 78 | + y(i) = 0 |
| 79 | + for(j <- 0 until n_visible) { |
| 80 | + y(i) += W(i)(j) * x(j) |
| 81 | + } |
| 82 | + y(i) += hbias(i) |
| 83 | + y(i) = sigmoid(y(i)) |
| 84 | + } |
| 85 | + } |
| 86 | + |
| 87 | + // Decode |
| 88 | + def get_reconstructed_input(y: Array[Double], z: Array[Double]) { |
| 89 | + var i: Int = 0 |
| 90 | + var j: Int = 0 |
| 91 | + for(i <- 0 until n_visible) { |
| 92 | + z(i) = 0 |
| 93 | + for(j <- 0 until n_hidden) { |
| 94 | + z(i) += W(j)(i) * y(j) |
| 95 | + } |
| 96 | + z(i) += vbias(i) |
| 97 | + z(i) = sigmoid(z(i)) |
| 98 | + } |
| 99 | + } |
| 100 | + |
| 101 | + def train(x: Array[Int], lr: Double, corruption_level: Double) { |
| 102 | + var i: Int = 0 |
| 103 | + var j: Int = 0 |
| 104 | + |
| 105 | + val tilde_x: Array[Int] = new Array[Int](n_visible) |
| 106 | + val y: Array[Double] = new Array[Double](n_hidden) |
| 107 | + val z: Array[Double] = new Array[Double](n_visible) |
| 108 | + |
| 109 | + val L_vbias: Array[Double] = new Array[Double](n_visible) |
| 110 | + val L_hbias: Array[Double] = new Array[Double](n_hidden) |
| 111 | + |
| 112 | + val p: Double = 1 - corruption_level |
| 113 | + |
| 114 | + get_corrupted_input(x, tilde_x, p) |
| 115 | + get_hidden_values(tilde_x, y) |
| 116 | + get_reconstructed_input(y, z) |
| 117 | + |
| 118 | + // vbias |
| 119 | + for(i <- 0 until n_visible) { |
| 120 | + L_vbias(i) = x(i) - z(i) |
| 121 | + vbias(i) += lr * L_vbias(i) / N |
| 122 | + } |
| 123 | + |
| 124 | + // hbias |
| 125 | + for(i <- 0 until n_hidden) { |
| 126 | + L_hbias(i) = 0 |
| 127 | + for(j <- 0 until n_visible) { |
| 128 | + L_hbias(i) += W(i)(j) * L_vbias(j) |
| 129 | + } |
| 130 | + L_hbias(i) *= y(i) * (1 - y(i)) |
| 131 | + hbias(i) += lr * L_hbias(i) / N |
| 132 | + } |
| 133 | + |
| 134 | + // W |
| 135 | + for(i <- 0 until n_hidden) { |
| 136 | + for(j <- 0 until n_visible) { |
| 137 | + W(i)(j) += lr * (L_hbias(i) * tilde_x(j) + L_vbias(j) * y(i)) / N |
| 138 | + } |
| 139 | + } |
| 140 | + } |
| 141 | + |
| 142 | + def reconstruct(x: Array[Int], z: Array[Double]) { |
| 143 | + val y: Array[Double] = new Array[Double](n_hidden) |
| 144 | + |
| 145 | + get_hidden_values(x, y) |
| 146 | + get_reconstructed_input(y, z) |
| 147 | + } |
| 148 | + |
| 149 | +} |
| 150 | + |
| 151 | + |
| 152 | +object dA { |
| 153 | + def test_dA() { |
| 154 | + val rng: Random = new Random(123) |
| 155 | + var learning_rate: Double = 0.1 |
| 156 | + val corruption_level: Double = 0.3 |
| 157 | + val training_epochs: Int = 500 |
| 158 | + |
| 159 | + val train_N: Int = 10 |
| 160 | + val test_N: Int = 2 |
| 161 | + |
| 162 | + val n_visible: Int = 20 |
| 163 | + val n_hidden: Int = 5 |
| 164 | + |
| 165 | + val train_X: Array[Array[Int]] = Array( |
| 166 | + Array(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), |
| 167 | + Array(1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), |
| 168 | + Array(1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), |
| 169 | + Array(1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), |
| 170 | + Array(0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), |
| 171 | + Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), |
| 172 | + Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1), |
| 173 | + Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1), |
| 174 | + Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1), |
| 175 | + Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0) |
| 176 | + ) |
| 177 | + |
| 178 | + val da: dA = new dA(train_N, n_visible, n_hidden, rng=rng) |
| 179 | + |
| 180 | + var i: Int = 0 |
| 181 | + var j: Int = 0 |
| 182 | + |
| 183 | + // train |
| 184 | + var epoch: Int = 0 |
| 185 | + for(epoch <- 0 until training_epochs) { |
| 186 | + for(i <- 0 until train_N) { |
| 187 | + da.train(train_X(i), learning_rate, corruption_level) |
| 188 | + } |
| 189 | + } |
| 190 | + |
| 191 | + |
| 192 | + // test data |
| 193 | + val test_X: Array[Array[Int]] = Array( |
| 194 | + Array(1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), |
| 195 | + Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0) |
| 196 | + ) |
| 197 | + |
| 198 | + val reconstructed_X: Array[Array[Double]] = Array.ofDim[Double](test_N, n_visible) |
| 199 | + for(i <- 0 until test_N) { |
| 200 | + da.reconstruct(test_X(i), reconstructed_X(i)) |
| 201 | + for(j <- 0 until n_visible) { |
| 202 | + printf("%.5f ", reconstructed_X(i)(j)) |
| 203 | + } |
| 204 | + println() |
| 205 | + } |
| 206 | + } |
| 207 | + |
| 208 | + def main(args: Array[String]) { |
| 209 | + test_dA() |
| 210 | + } |
| 211 | + |
| 212 | +} |
0 commit comments