Skip to content

Commit 21eb2ed

Browse files
authored
Merge pull request #7682 from efiring/image_masked_example
DOC: remove overlapping text from image_masked.py
2 parents 4c2a412 + 683f3df commit 21eb2ed

File tree

1 file changed

+27
-16
lines changed

1 file changed

+27
-16
lines changed

examples/pylab_examples/image_masked.py

+27-16
Original file line numberDiff line numberDiff line change
@@ -5,15 +5,17 @@
55
get a filled contour effect.
66
"""
77
from copy import copy
8-
from numpy import ma
9-
import matplotlib.colors as colors
8+
9+
import numpy as np
1010
import matplotlib.pyplot as plt
11+
import matplotlib.colors as colors
1112
import matplotlib.mlab as mlab
12-
import numpy as np
1313

1414
# compute some interesting data
15-
delta = 0.025
16-
x = y = np.arange(-3.0, 3.0, delta)
15+
x0, x1 = -5, 5
16+
y0, y1 = -3, 3
17+
x = np.linspace(x0, x1, 500)
18+
y = np.linspace(y0, y1, 500)
1719
X, Y = np.meshgrid(x, y)
1820
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
1921
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
@@ -31,31 +33,40 @@
3133
# If you comment out all the palette.set* lines, you will see
3234
# all the defaults; under and over will be colored with the
3335
# first and last colors in the palette, respectively.
34-
Zm = ma.masked_where(Z > 1.2, Z)
36+
Zm = np.ma.masked_where(Z > 1.2, Z)
3537

3638
# By setting vmin and vmax in the norm, we establish the
3739
# range to which the regular palette color scale is applied.
3840
# Anything above that range is colored based on palette.set_over, etc.
3941

4042
# set up the axes
41-
fig, (ax1, ax2) = plt.subplots(1, 2)
43+
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(6, 5.4))
4244

4345
# plot using 'continuous' color map
4446
im = ax1.imshow(Zm, interpolation='bilinear',
4547
cmap=palette,
46-
norm=colors.Normalize(vmin=-1.0, vmax=1.0, clip=False),
47-
origin='lower', extent=[-3, 3, -3, 3])
48-
ax1.set_title('Green=low, Red=high, Blue=bad')
49-
fig.colorbar(im, extend='both', orientation='horizontal', shrink=0.8, ax=ax1)
48+
norm=colors.Normalize(vmin=-1.0, vmax=1.0),
49+
aspect='auto',
50+
origin='lower',
51+
extent=[x0, x1, y0, y1])
52+
ax1.set_title('Green=low, Red=high, Blue=masked')
53+
cbar = fig.colorbar(im, extend='both', shrink=0.9, ax=ax1)
54+
cbar.set_label('uniform')
55+
for ticklabel in ax1.xaxis.get_ticklabels():
56+
ticklabel.set_visible(False)
5057

51-
# plot using 'discrete' color map
58+
# Plot using a small number of colors, with unevenly spaced boundaries.
5259
im = ax2.imshow(Zm, interpolation='nearest',
5360
cmap=palette,
5461
norm=colors.BoundaryNorm([-1, -0.5, -0.2, 0, 0.2, 0.5, 1],
55-
ncolors=256, clip=False),
56-
origin='lower', extent=[-3, 3, -3, 3])
62+
ncolors=palette.N),
63+
aspect='auto',
64+
origin='lower',
65+
extent=[x0, x1, y0, y1])
5766
ax2.set_title('With BoundaryNorm')
58-
fig.colorbar(im, extend='both', spacing='proportional',
59-
orientation='horizontal', shrink=0.8, ax=ax2)
67+
cbar = fig.colorbar(im, extend='both', spacing='proportional',
68+
shrink=0.9, ax=ax2)
69+
cbar.set_label('proportional')
6070

71+
fig.suptitle('imshow, with out-of-range and masked data')
6172
plt.show()

0 commit comments

Comments
 (0)