@@ -188,64 +188,84 @@ def test_gridspec_make_colorbar():
188
188
plt .subplots_adjust (top = 0.95 , right = 0.95 , bottom = 0.2 , hspace = 0.25 )
189
189
190
190
191
- @image_comparison (baseline_images = ['colorbar_join' ,
192
- 'colorbar_join_frac' , ],
193
- extensions = ['png' ], remove_text = True ,
194
- savefig_kwarg = {'dpi' : 40 })
195
191
def test_join_colorbar ():
196
- data = np . arange ( 1200 ). reshape ( 30 , 40 )
192
+ test_points = [ 0.1 , 0.3 , 0.5 , 0.7 , 0.9 ]
197
193
198
194
# Jet is a LinearSegmentedColormap
199
195
cmap1 = plt .get_cmap ('viridis' , 5 )
200
196
cmap2 = plt .get_cmap ('jet' , 5 )
201
197
202
198
# This should be a listed colormap.
203
199
cmap = cmap1 .join (cmap2 )
204
-
205
- plt .figure ()
206
- plt .pcolormesh (data , cmap = cmap )
207
- plt .colorbar (orientation = 'vertical' )
200
+ vals = cmap (test_points )
201
+ _vals = np .array (
202
+ [[0.229739 , 0.322361 , 0.545706 , 1. ],
203
+ [0.369214 , 0.788888 , 0.382914 , 1. ],
204
+ [0. , 0. , 0.5 , 1. ],
205
+ [0.48387097 , 1. , 0.48387097 , 1. , ],
206
+ [0.5 , 0. , 0 , 1. , ]]
207
+ )
208
+ assert np .allclose (vals , _vals )
208
209
209
210
# Use the 'frac_self' kwarg for the listed cmap
210
211
cmap = cmap1 .join (cmap2 , frac_self = 0.7 , N = 50 )
211
-
212
- plt .figure ()
213
- plt .pcolormesh (data , cmap = cmap )
214
- plt .colorbar (orientation = 'vertical' )
212
+ vals = cmap (test_points )
213
+ _vals = np .array (
214
+ [[0.267004 , 0.004874 , 0.329415 , 1. , ],
215
+ [0.127568 , 0.566949 , 0.550556 , 1. , ],
216
+ [0.369214 , 0.788888 , 0.382914 , 1. , ],
217
+ [0. , 0. , 0.5 , 1. , ],
218
+ [1. , 0.59259259 , 0. , 1. , ]]
219
+ )
220
+ assert np .allclose (vals , _vals )
215
221
216
222
217
- @image_comparison (baseline_images = ['colorbar_truncate' ,
218
- 'colorbar_trunc-getitem' ,
219
- 'colorbar_trunc-getitem-int' ,
220
- 'colorbar_trunc-getitem-int-1jN' , ],
221
- extensions = ['png' ], remove_text = True ,
222
- savefig_kwarg = {'dpi' : 40 })
223
223
def test_truncate_colorbar ():
224
- data = np . arange ( 1200 ). reshape ( 30 , 40 )
225
-
224
+ test_points = [ 0.1 , 0.3 , 0.5 , 0.7 , 0.9 ]
225
+
226
226
cmap = plt .get_cmap ('viridis' , 32 ).truncate (0.2 , 0.7 )
227
-
228
- plt .figure ()
229
- plt .pcolormesh (data , cmap = cmap )
230
- plt .colorbar (orientation = 'vertical' )
227
+ vals = cmap (test_points )
228
+ _vals = np .array (
229
+ [[0.243113 , 0.292092 , 0.538516 , 1. ],
230
+ [0.19586 , 0.395433 , 0.555276 , 1. ],
231
+ [0.144759 , 0.519093 , 0.556572 , 1. ],
232
+ [0.12478 , 0.640461 , 0.527068 , 1. ],
233
+ [0.226397 , 0.728888 , 0.462789 , 1. ]]
234
+ )
235
+ assert np .allclose (vals , _vals )
231
236
232
237
cmap = plt .get_cmap ('viridis' , 128 )[0.2 :- 0.3 :16 * 1j ]
233
-
234
- plt .figure ()
235
- plt .pcolormesh (data , cmap = cmap )
236
- plt .colorbar (orientation = 'vertical' )
238
+ vals = cmap (test_points )
239
+ _vals = np .array (
240
+ [[0.241237 , 0.296485 , 0.539709 , 1. ],
241
+ [0.192357 , 0.403199 , 0.555836 , 1. ],
242
+ [0.140536 , 0.530132 , 0.555659 , 1. ],
243
+ [0.12138 , 0.629492 , 0.531973 , 1. ],
244
+ [0.214 , 0.722114 , 0.469588 , 1. ]]
245
+ )
246
+ assert np .allclose (vals , _vals )
237
247
238
248
cmap = plt .get_cmap ('viridis' , 128 )[25 :90 ]
239
-
240
- plt .figure ()
241
- plt .pcolormesh (data , cmap = cmap )
242
- plt .colorbar (orientation = 'vertical' )
243
-
249
+ vals = cmap (test_points )
250
+ _vals = np .array (
251
+ [[0.233603 , 0.313828 , 0.543914 , 1. ],
252
+ [0.185556 , 0.41857 , 0.556753 , 1. ],
253
+ [0.14618 , 0.515413 , 0.556823 , 1. ],
254
+ [0.119483 , 0.614817 , 0.537692 , 1. ],
255
+ [0.19109 , 0.708366 , 0.482284 , 1. ]]
256
+ )
257
+ assert np .allclose (vals , _vals )
258
+
244
259
cmap = plt .get_cmap ('viridis' , 128 )[25 :90 :16 * 1j ]
245
-
246
- plt .figure ()
247
- plt .pcolormesh (data , cmap = cmap )
248
- plt .colorbar (orientation = 'vertical' )
260
+ vals = cmap (test_points )
261
+ _vals = np .array (
262
+ [[0.241237 , 0.296485 , 0.539709 , 1. ],
263
+ [0.192357 , 0.403199 , 0.555836 , 1. ],
264
+ [0.140536 , 0.530132 , 0.555659 , 1. ],
265
+ [0.12138 , 0.629492 , 0.531973 , 1. ],
266
+ [0.214 , 0.722114 , 0.469588 , 1. ]]
267
+ )
268
+ assert np .allclose (vals , _vals )
249
269
250
270
251
271
@image_comparison (baseline_images = ['colorbar_single_scatter' ],
0 commit comments