@@ -6322,19 +6322,19 @@ def _normalize_input(inp, ename='input'):
6322
6322
if np .min (bottom ) > 0 :
6323
6323
minimum = np .min (bottom )
6324
6324
elif normed or weights is not None :
6325
- # For normed data, set to log base * minimum data value
6325
+ # For normed data, set to minimum data value / logbase
6326
6326
# (gives 1 full tick-label unit for the lowest filled bin)
6327
6327
ndata = np .array (n )
6328
6328
minimum = (np .min (ndata [ndata > 0 ])) / logbase
6329
6329
else :
6330
- # For non-normed data, set the min to log base,
6330
+ # For non-normed data, set the min to 1 / log base,
6331
6331
# again so that there is 1 full tick-label unit
6332
6332
# for the lowest bin
6333
6333
minimum = 1.0 / logbase
6334
6334
6335
6335
y [0 ], y [- 1 ] = minimum , minimum
6336
6336
else :
6337
- minimum = 0 # np.min(bins)
6337
+ minimum = 0
6338
6338
6339
6339
if align == 'left' or align == 'center' :
6340
6340
x -= 0.5 * (bins [1 ]- bins [0 ])
@@ -6379,9 +6379,9 @@ def _normalize_input(inp, ename='input'):
6379
6379
for patch_list in patches :
6380
6380
for patch in patch_list :
6381
6381
if orientation == 'vertical' :
6382
- patch .stickies .y .append (0 )
6382
+ patch .stickies .y .append (minimum )
6383
6383
elif orientation == 'horizontal' :
6384
- patch .stickies .x .append (0 )
6384
+ patch .stickies .x .append (minimum )
6385
6385
6386
6386
# we return patches, so put it back in the expected order
6387
6387
patches .reverse ()
@@ -6408,14 +6408,6 @@ def _normalize_input(inp, ename='input'):
6408
6408
p .update (kwargs )
6409
6409
p .set_label ('_nolegend_' )
6410
6410
6411
- if binsgiven :
6412
- if orientation == 'vertical' :
6413
- self .update_datalim (
6414
- [(bins [0 ], 0 ), (bins [- 1 ], 0 )], updatey = False )
6415
- else :
6416
- self .update_datalim (
6417
- [(0 , bins [0 ]), (0 , bins [- 1 ])], updatex = False )
6418
-
6419
6411
if nx == 1 :
6420
6412
return n [0 ], bins , cbook .silent_list ('Patch' , patches [0 ])
6421
6413
else :
0 commit comments